Journal of Heuristics

, Volume 16, Issue 3, pp 289–310 | Cite as

Human-guided search

  • Gunnar W. KlauEmail author
  • Neal Lesh
  • Joe Marks
  • Michael Mitzenmacher


We present a survey of techniques and results from the Human-Guided Search (HuGS) project, an effort to investigate interactive optimization. HuGS provides simple and general visual metaphors relating to local search operations that allow users to guide the exploration of the search space. These metaphors apply to a wide variety of problems and combinatorial optimization algorithms, which we demonstrate by describing the HuGS toolkit and as well as eight diverse applications we developed using it. User experiments show that human guidance can improve the performance of powerful heuristic search algorithms. HuGS is also a valuable development environment for understanding and improving optimization algorithms. Although HuGS was designed for human-computer interaction, for two different problems we have used the HuGS code base to develop completely automatic heuristic algorithms that produced at the time new best automatic results on benchmark problem instances.


Interactive optimization Human-computer interaction Tabu search 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Aarts, E., van Laarhoven, P., Lenstra, J.K., Ulder, N.: A computational study of local search algorithms for job-shop scheduling. ORSA J. Comput. 6(2), 118–125 (1994) zbMATHGoogle Scholar
  2. Anderson, D., Anderson, E., Lesh, N., Marks, J., Mirtich, B., Ratajczak, D., Ryall, K.: Human-guided simple search. In: Proc. AAAI 2000, pp. 209–216 (2000) Google Scholar
  3. Baker, B.S. Jr., Coffman, E.G., Rivest, R.L.: Orthogonal packings in two dimensions. SIAM J. Comput. 9, 846–855 (1980) zbMATHCrossRefMathSciNetGoogle Scholar
  4. Bastolla, U., Frauenkron, H., Gerstner, E., Grassberger, P., Nadler, W.: Testing a new Monte Carlo algorithm for protein folding. Proteins: Struct. Funct. Genet. 32, 52–66 (1998) CrossRefGoogle Scholar
  5. Cheng, C.D., Kosorukoff, A.: Interactive one-max problem allows to compare the performance of interactive and human-based genetic algorithms. In: Deb, K., (eds.) Proc. Genetic and Evolutionary Computation Conference (GECCO 2004). Lecture Notes in Computer Science, vol. 3102, pp. 983–993. Springer, Berlin (2004) Google Scholar
  6. Chien, S., Rabideau, G., Willis, J., Mann, T.: Automating planning and scheduling of shuttle payload operations. J. Artif. Intell. 114, 239–255 (1999) zbMATHCrossRefGoogle Scholar
  7. Chimani, M., Lesh, N., Mitzenmacher, M., Sidner, C., Tanaka, H.: A case study in large-scale interactive optimization. In: Proc. Int. Conf. on Artificial Intelligence and Applications (AIA05), pp. 24–29. Acta Press, Calgary (2005) Google Scholar
  8. Christensen, J., Marks, J., Shieber, S.: An empirical study of algorithms for point-feature label placement. ACM Trans. Graph. 14(3), 203–232 (1995) CrossRefGoogle Scholar
  9. Colgan, L., Spence, R., Rankin, P.: The cockpit metaphor. Behav. Inf. Technol. 14(4), 251–263 (1995) CrossRefGoogle Scholar
  10. Dill, A.K.: Theory for the folding and stability of globular proteins. Biochemistry 24, 1501 (1985) CrossRefGoogle Scholar
  11. do Nascimento, H.A.D., Eades, P.: User hints for directed graph drawing. In: Proc. Graph Drawing, pp. 205–219. Springer, Berlin, (2002) CrossRefGoogle Scholar
  12. Eades, P., Wormald, N.C.: Edge crossings in drawings of bipartite graphs. Algorithmica 11, 379–403 (1994) zbMATHCrossRefMathSciNetGoogle Scholar
  13. Feillet, D., Dejax, P., Gendreau, M.: The selective traveling salesman problem and extensions: an overview. TR CRT-2001-25, Laboratoire Productique Logistique, Ecole Centrale Paris (2001) Google Scholar
  14. Ferguson, G., Allen, J.: Trips: An integrated intelligent problem-solving assistant. In: Proc. 15th Nat. Conf. AI, pp. 567–572 (1998) Google Scholar
  15. Gleicher, M., Witkin, A.: Drawing with constraints. Vis. Comput. 11, 39–51 (1994) CrossRefGoogle Scholar
  16. Glover, F., Laguna, M.: Tabu Search. Kluwer Academic, Amsterdam (1997) zbMATHGoogle Scholar
  17. Halim, S., Yap, R.H.C., Lau, H.C.: Viz: a visual analysis suite for explaining local search behavior. In: UIST ’06: Proc. 19th Annual ACM Symposium on User Interface Software and Technology, pp. 57–66. ACM, New York (2006) CrossRefGoogle Scholar
  18. Hammond, S.P.: Putting the user in the loop: On-line user adaption of genetic algorithms. In: Sarker, R., (eds.) Proceedings of the 2003 Congress on Evolutionary Computation CEC2003, pp. 892–897. IEEE Press, New York (2003) CrossRefGoogle Scholar
  19. Hansen, P., Mladenović, N.: An introduction to variable neighborhood search. In: Voß, S., Martello, S., Osman, I., Roucairol, C. (eds.) Metaheuristics: Advances and Trends in Local Search Paradigms for Optimization, pp. 433–458. Kluwer Academic, Amsterdam (1999), Chapter 30 Google Scholar
  20. Hopper, E.: Two-dimensional packing utilising evolutionary algorithms and other meta-heuristic methods. PhD thesis, Cardiff University, United Kingdom (2000) Google Scholar
  21. Hopper, E., Turton, B.C.H.: An empirical investigation of meta-heuristic and heuristic algorithms for a 2d packing problem. Eur. J. Oper. Res. 128(1), 34–57 (2000) CrossRefGoogle Scholar
  22. Klau, G.W., Lesh, N., Marks, J., Mitzenmacher, M.: Human-guided tabu search. In: Proc. 18th National Conf. on Artificial Intelligence (AAAI 2002), pp. 41–47. AAAI Press, Menio Park (2002a) Google Scholar
  23. Klau, G.W., Lesh, N., Marks, J., Mitzenmacher, M., Schafer, G.T.: The HuGS platform: A toolkit for interactive optimization. In: Proceedings of Advanced Visual Interfaces, pp. 324–330 (2002b) Google Scholar
  24. König, R., Dandekar, T.: Improving genetic algorithms for protein folding simulations by systematic crossover. BioSystems 50, 17–25 (1999) CrossRefGoogle Scholar
  25. Lesh, N., Marks, J., Patrignani, M.: Interactive partitioning. In: Marks, J. (ed.) Graph Drawing, Proc. GD ’00. Lecture Notes Comput. Sci., vol. 1984, pp. 31–36. Springer, Berlin (2000) CrossRefGoogle Scholar
  26. Lesh, N., Mitzenmacher, M., Whitesides, S.: A complete and effective move set for simplified protein folding. In: Proc. 7th Intl. Conf. on Research in Computational Molecular Biology (RECOMB), pp. 188–195. New York, USA, 2003. Association for Computing Machinery, New York (2003) Google Scholar
  27. Lesh, N., Marks, J., McMahon, A., Mitzenmacher, M.: New heuristic and interactive approaches to 2D rectangular strip packing. J. Exp. Algorithmics 10, 1.2 (2005) CrossRefMathSciNetGoogle Scholar
  28. Liang, F., Wong, W.H.: Evolutionary Monte Carlo for protein folding simulations. J. Chem. Phys. 115(7), 3374–3380 (2001) CrossRefGoogle Scholar
  29. Malinchik, S., Orme, B., Rothermich, J.A., Bonabeau, E.: Exploratory data analysis with interactive evolution. In: Deb, K., (eds.) Proc. Genetic and Evolutionary Computation Conference (GECCO 2004). Lecture Notes in Computer Science, vol. 3102, pp. 1151–1161. Springer, Berlin (2004) Google Scholar
  30. Marden, J.I.: Analyzing and Modeling Rank Data. Chapman & Hall, New York (1995) zbMATHGoogle Scholar
  31. Milenkovic, V.J., Daniels, K.M.: Translational polygon containment and minimal enclosure using mathematical programming. Int. Trans. Oper. Res. 6, 525–554 (1999) CrossRefMathSciNetGoogle Scholar
  32. Mulder, J.D., van Wijk, J.J., van Liere, R.: A survey of computational steering environments. Future Gener. Comput. Syst. 15(1), 119–129 (1999) CrossRefGoogle Scholar
  33. Nelson, G.: Juno, a constraint based graphics system. Comput. Graph. 19(3), 235–243 (1985) (Proc. of SIGGRAPH ’85) CrossRefGoogle Scholar
  34. Poli, R., Cagnoni, S.: Genetic programming with user-driven selection: Experiments on the evolution of algorithms for image enhancement. In: Koza, J.R., (eds.) Genetic Programming 1997, pp. 269–277. Proceedings of the Second Annual Conference, Stanford University, CA, USA, 1997. Morgan Kaufmann, San Mateo (1997) Google Scholar
  35. Ramakrishnan, R., Ramachandran, B., Pekney, J.F.: A dynamic Monte Carlo algorithm for exploration of dense conformational space in heteropolymers. J. Chem. Phys. 106, 2418 (1997) CrossRefGoogle Scholar
  36. Ryall, K., Marks, J., Shieber, S.: Glide: An interactive system for graph drawing. In: Proc. of the 1997 ACM SIGGRAPH Symposium on User Interface Software and Technology (UIST ’97), pp. 97–104. Banff, Canada, October 1997 Google Scholar
  37. Sato, Y.: Voice conversion using interactive evolution of prosodic control. In: Langdon, W.B., (eds.) Proc. Genetic and Evolutionary Computation Conference (GECCO 2002), pp. 1204–1211. Morgan Kaufmann, New York (2002) Google Scholar
  38. Scott, S.D., Lesh, N., Klau, G.W.: Investigating human-computer optimization. In: Terveen, L., Wixon, D., Comstock, E., Sasse, A. (eds.) Proc. CHI 2002 Conf. on Human Factors in Computing Systems, pp. 155–163. ACM Press, New York (2002) Google Scholar
  39. Sims, K.: Artificial evolution for computer graphics. Comput. Graph. 25(3), 319–328 (1991) (Proc. of SIGGRAPH ’91) MathSciNetGoogle Scholar
  40. Smith, S.F., Lassila, O., Becker, M.: Configurable, mixed-initiative systems for planning and scheduling. In: Tate, A. (ed.) Advanced Planning Technology. AAAI Press, Menlo Park (1996). ISBN 0-929280-98-9 Google Scholar
  41. Solomon, M.M.: Algorithms for the vehicle routing and scheduling problems with time window constraints. Oper. Res. 35(2), 254–265 (1987) zbMATHCrossRefMathSciNetGoogle Scholar
  42. Sreevalsan-Nair, J., Verhoeven, M., Woodruff, D.L., Hotz, I., Hamann, B.: Human-guided enhancement of a stochastic local search: Visualization and adjustment of 3d pheromone. In: Stuetzle, T., Birattari, M., Hoos, H.H. (eds.) Proc. of Engineering Stochastic Local Search Algorithms (SLS) 2007. Lecture Notes in Computer Science, vol. 4638, pp. 182–186. Springer, Heidelberg (2007) Google Scholar
  43. Todd, S., Latham, W.: Evolutionary Art and Computers. Academic Press, New York (1992) zbMATHGoogle Scholar
  44. Waters, C.D.J.: Interactive vehicle routeing. J. Oper. Res. Soc. 35(9), 821–826 (1984) Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  • Gunnar W. Klau
    • 1
    Email author
  • Neal Lesh
    • 2
  • Joe Marks
    • 3
  • Michael Mitzenmacher
    • 4
  1. 1.CWIAmsterdamNetherlands
  2. 2.Dimagi, Inc.CambridgeUSA
  3. 3.Walt Disney Animation StudiosBurbankUSA
  4. 4.Harvard School of Engineering and Applied SciencesCambridgeUSA

Personalised recommendations