Journal of Heuristics

, Volume 16, Issue 1, pp 1–22 | Cite as

Neighborhood structures for the container loading problem: a VNS implementation

  • F. Parreño
  • R. Alvarez-Valdes
  • J. F. Oliveira
  • J. M. Tamarit


This paper presents a Variable Neighborhood Search (VNS) algorithm for the container loading problem. The algorithm combines a constructive procedure based on the concept of maximal-space, with five new movements defined directly on the physical layout of the packed boxes, which involve insertion and deletion strategies.

The new algorithm is tested on the complete set of Bischoff and Ratcliff problems, ranging from weakly to strongly heterogeneous instances, and outperforms all the reported algorithms which have used those test instances.


Container loading 3D packing Heuristics VNS 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Bischoff, E.E.: Three dimensional packing of items with limited loading bearing strength. Eur. J. Oper. Res. 168, 952–966 (2006) MATHCrossRefGoogle Scholar
  2. Bischoff, E.E., Marriot, M.D.: A comparative evaluation of heuristics for container loading. Eur. J. Oper. Res. 44, 267–276 (1990) MATHCrossRefGoogle Scholar
  3. Bischoff, E.E., Ratcliff, M.S.W.: Issues in the development of approaches to container loading. Omega 23, 377–390 (1995) CrossRefGoogle Scholar
  4. Bischoff, E.E., Janetz, F., Ratcliff, M.S.W.: Loading pallets with nonidentical items. Eur. J. Oper. Res. 84, 681–692 (1995) MATHCrossRefGoogle Scholar
  5. Bortfeldt, A., Gehring, H.: A tabu search algorithm for weakly heterogeneous container loading problems. OR Spectr. 20, 237–250 (1998) MATHCrossRefMathSciNetGoogle Scholar
  6. Bortfeldt, A., Gehring, H.: A hybrid genetic algorithm for the container loading problem. Eur. J. Oper. Res. 131, 143–161 (2001) MATHCrossRefGoogle Scholar
  7. Bortfeldt, A., Gehring, H., Mack, D.: A parallel tabu search algorithm for solving the container loading problem. Parallel Comput. 29, 641–662 (2003) CrossRefGoogle Scholar
  8. Brimberg, J., Uroševic, D., Mladenovic, N.: Variable neighborhood search for the vertex weighted k-cardinality tree problem. Eur. J. Oper. Res. 171, 74–84 (2006) MATHCrossRefGoogle Scholar
  9. Davies, A.P., Bischoff, E.E.: Weight distribution considerations in container loading. Working Paper, European Business Management School, Statistics and OR Group, University of Wales, Swansea (1998) Google Scholar
  10. Eley, M.: Solving container loading problems by block arrangement. Eur. J. Oper. Res. 141, 393–409 (2002) MATHCrossRefMathSciNetGoogle Scholar
  11. García-López, F., Melián-Batista, B., Moreno-Pérez, J.A., Moreno-Vega, J.M.: The parallel variable neighborhood search for the p-median problem. J. Heur. 8, 1381–1231 (2002) CrossRefGoogle Scholar
  12. Garey, M., Johnson, D.: Computers and Intractability. Freeman, San Fracisco (1979) MATHGoogle Scholar
  13. Gavranovic, H.: Local search and suffix tree for car-sequencing problem with colors. Eur. J. Oper. Res. (2008, in press) Google Scholar
  14. Gehring, H., Bortfeldt, A.: A genetic algorithm for solving the container loading problem. Int. Trans. Oper. Res. 4, 401–418 (1997) MATHCrossRefGoogle Scholar
  15. Gehring, H., Bortfeldt, A.: A parallel genetic algorithm for solving the container loading problem. Int. Trans. Oper. Res. 9, 497–511 (2002) MATHCrossRefMathSciNetGoogle Scholar
  16. George, J.A., Robinson, D.F.: A heuristic for packing boxes into a container. Comput. Oper. Res. 7, 147–156 (1980) CrossRefGoogle Scholar
  17. Hansen, P., Mladenovic, N.: Variable neighborhood search. In: Burke, E., Kendall, G. (eds.) Search Methodologies: Introductory Tutorials in Optimization and Decision Support Techniques, pp. 211–238. Springer, Berlin (2005) Google Scholar
  18. Kolisch, R., Hartmann, S.: Experimental investigation of heuristics for resource-constrained project scheduling: an update. Eur. J. Oper. Res. 174, 23–37 (2006) MATHCrossRefGoogle Scholar
  19. Kytöjokia, J., Nuortiob, T., Bräysy, O., M, Gendreau.: An efficient variable neighborhood search heuristic for very large scale vehicle routing problems. Comput. Oper. Res. 34, 2743–2757 (2007) CrossRefGoogle Scholar
  20. Mack, D., Bortfeldt, A., Gehring, H.: A parallel hybrid local search algorithm for the container loading problem. Int. Trans. Oper. Res. 11, 511–533 (2004) MATHCrossRefGoogle Scholar
  21. Mladenovic, N., Hansen, P.: Variable neighborhood search. Comput. Oper. Res. 24, 1097–1100 (1997) MATHCrossRefMathSciNetGoogle Scholar
  22. Moura, A., Oliveira, J.F.: A GRASP approach to the container-loading problem. IEEE Intell. Syst. 20, 50–57 (2005) CrossRefGoogle Scholar
  23. Parreño, F., Alvarez-Valdes, R., Oliveira, J.F., Tamarit, J.M.: A maximal-space algorithm for the container loading problem. INFORMS J. Comput. (2008, in press) Google Scholar
  24. Pisinger, D.: Heuristics for the container loading problem. Eur. J. Oper. Res. 141, 382–392 (2002) MATHCrossRefMathSciNetGoogle Scholar
  25. Wäscher, G., Haussner, H., Schumann, H.: An improved typology of cutting and packing problems. Eur. J. Oper. Res. 183, 1109–1130 (2007) MATHCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  • F. Parreño
    • 4
  • R. Alvarez-Valdes
    • 1
  • J. F. Oliveira
    • 2
    • 3
  • J. M. Tamarit
    • 1
  1. 1.Department of Statistics and Operations ResearchUniversity of ValenciaValenciaSpain
  2. 2.Faculty of EngineeringUniversity of PortoPortoPortugal
  3. 3.INESC Porto—Instituto de Engenharia de Sistemas e Computadores do PortoPortoPortugal
  4. 4.Department of Computer ScienceUniversity of Castilla-La ManchaAlbaceteSpain

Personalised recommendations