Journal of Heuristics

, 15:479 | Cite as

A cross entropy based algorithm for reliability problems



The Cross Entropy method has recently been applied to combinatorial optimization problems with promising results. This paper proposes a Cross Entropy based algorithm for reliability optimization of complex systems, where one wants to maximize the reliability of a system through optimal allocation of redundant components while respecting a set of budget constraints. We illustrate the effectiveness of the proposed algorithm on two classes of problems, software system reliability optimization and complex network reliability optimization, by testing it on instances from the literature as well as on randomly generated large scale instances. Furthermore, we show how a Cross Entropy-based algorithm can be fine-tuned by using a training scheme based upon the Response Surface Methodology. Computational results show the effectiveness as well as the robustness of the algorithm on different classes of problems.


Reliability Cross entropy Metaheuristics 


  1. Aggarwal, K.K.: Redundancy optimization in general systems. IEEE Trans. Reliab. R-25, 330–332 (1976) Google Scholar
  2. Alon, G., Kroese, D., Raviv, T., Rubinstein, R.Y.: Application of the cross-entropy method to the buffer allocation problem in a simulation-based environment. Ann. Oper. Res. 1(134), 137–151 (2005) CrossRefMathSciNetGoogle Scholar
  3. Belli, F., Jedrzejowicz, P.: An approach to the reliability optimization of software with redundancy. IEEE Trans. Softw. Eng. 17(3), 310–312 (1991) CrossRefGoogle Scholar
  4. Berman, O., Ashrafi, N.: Optimization models for reliability of modular software systems. IEEE Trans. Softw. Eng. 19(11), 1119–1123 (1993) CrossRefGoogle Scholar
  5. Berman, O., Ashrafi, N.: Optimal design of large software-systems using N-version programming. IEEE Trans. Reliab. 43(2), 344 (1994) CrossRefGoogle Scholar
  6. Blum, C., Roli, A.: Metaheuristics in combinatorial optimization: overview and conceptual comparison. ACM Comput. Surv. 35(3), 268–308 (2003) CrossRefGoogle Scholar
  7. Chepuri, K., Homem De Mello, T.: Solving the vehicle routing problem with stochastic demands using the cross-entropy method. Ann. Oper. Res. 1(134), 153–181 (2005) CrossRefMathSciNetGoogle Scholar
  8. Coit, D.W., Smith, A.E.: Penalty guided genetic search for reliability design optimization. Comput. Ind. Eng. 30(4), 895–904 (1996a) CrossRefGoogle Scholar
  9. Coit, D.W., Smith, A.E.: Reliability optimization of series-parallel systems using a genetic algorithm. IEEE Trans. Reliab. 45(2), 254–266 (1996b) CrossRefGoogle Scholar
  10. Crama, Y.: Recognition problems for special classes of polynomials in 0–1 variables. Math. Program. 44, 139–155 (1987) CrossRefMathSciNetGoogle Scholar
  11. De Boer, P., Kroese, D.P., Mannor, S., Rubinstein, R.Y.: A tutorial on the cross-entropy method. Ann. Oper. Res. 134(1), 19–67 (2005) MATHCrossRefMathSciNetGoogle Scholar
  12. Dorigo, M., Di Caro, G.: The ant colony optimization meta-heuristic. In: New Ideas in Optimization, pp. 11–32. McGraw-Hill, Cambridge (1999) Google Scholar
  13. Feo, T.A., Resende, G.C.: Greedy randomized adaptive search procedures. J. Glob. Optim. 6, 109–133 (1995) MATHCrossRefMathSciNetGoogle Scholar
  14. Garey, M.R., Johnson, D.S.: Computers and Intractability: A Guide to the Theory of NP-Completeness. Freeman, New York (1979) MATHGoogle Scholar
  15. Glover, F., Laguna, M.: Tabu Search. Kluwer Academic, Dordrecht (1997) MATHGoogle Scholar
  16. Hsieh, Y.C.: A linear approximation for redundant reliability problems with multiple component choices. Comput. Ind. Eng. 44, 91–103 (2002) CrossRefGoogle Scholar
  17. Ilog Cplex 10.0: ILOG Cplex Component Libraries (2007)
  18. Keith, J., Kroese, D.P.: SABRES: sequence alignment by rare event simulation. In: Proceedings of the 2002 Winter Simulation Conference, pp. 320–327, San Diego (2002) Google Scholar
  19. Kim, J.H., Yum, B.J.: A heuristic method for solving redundancy optimization problem in complex systems. IEEE Trans. Reliab. 42(4), 572–578 (1993) MATHCrossRefGoogle Scholar
  20. Kohda, T., Inoue, K.: A reliability optimization method for complex systems with the criterion of local optimality. IEEE Trans. Reliab. R-31(1), 109–111 (1982) Google Scholar
  21. Kuo, W., Prasad, V.R.: An annotated overview of system-reliability optimization. IEEE Trans. Reliab. 49(2), 176–187 (2000) CrossRefGoogle Scholar
  22. Kuo, W., Prasad, V.R., Tillman, F.A., Hwang, C.: Optimal Reliability Design. Cambridge University Press, Cambridge (2001) Google Scholar
  23. Liang, Y.C., Smith, A.E.: An ant colony optimization algorithm for the redundancy allocation problem (RAP). IEEE Trans. Reliab. 53(3), 417–423 (2004) CrossRefGoogle Scholar
  24. Nakawara, Y., Miyazaki, S.: Surrogate constraints algorithm for reliability optimization problems with two constraints. IEEE Trans. Reliab. R30(2), 175–180 (1981) Google Scholar
  25. Ravi, V., Murty, B.S.N., Reddy, P.: Nonequilibrium simulated annealing algorithm applied to reliability optimization of complex systems. IEEE Trans. Reliab. 46(2), 233–239 (1997) CrossRefGoogle Scholar
  26. Rubinstein, R.Y.: Optimization of computer simulation models with rare events. Eur. J. Oper. Res. 99, 89–112 (1997) CrossRefGoogle Scholar
  27. Rubinstein, R.Y.: The cross-entropy method for combinatorial and continuous optimization. Methodol. Comput. Appl. Probab. 2, 127–190 (1999) CrossRefGoogle Scholar
  28. Rubinstein, R.Y.: Combinatorial optimization, cross-entropy, ants and rare events. In: Uryasev, S., Pardalos, P.M. (eds.) Stochastic Optimization: Algorithms and Applications, pp. 304–358. Kluwer, New York (2001) Google Scholar
  29. Rubinstein, R.Y.: The cross-entropy method and rare-events for maximal cut and bipartition problems. ACM Trans. Model. Comput. Simul. 12(1), 27–53 (2002) CrossRefGoogle Scholar
  30. Rubinstein, R.Y., Kroese, D.P.: The Cross-Entropy Method: A Unified Approach to Combinatorial Optimization, Monte Carlo Simulation, and Machine Learning. Springer, Berlin (2004) MATHGoogle Scholar
  31. Shi, D.H.: A new heuristic algorithm for constrained redundancy-optimization in complex systems. IEEE Trans. Reliab. R-36(5), 621–623 (1987) CrossRefGoogle Scholar
  32. You, P.S., Chen, T.C.: An efficient heuristic for series-parallel redundant reliability problems. Comput. Oper. Res. 32(8), 2117–2127 (2005) MATHCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  1. 1.Institut für WirtschaftsinformatikUniversität HamburgHamburgGermany
  2. 2.Instituto Tecnologico de MonterreyMéxico DFMéxico

Personalised recommendations