Journal of Heuristics

, Volume 15, Issue 4, pp 403–423 | Cite as

Guarantees for the success frequency of an algorithm for finding Dodgson-election winners

Article

Abstract

In the year 1876 the mathematician Charles Dodgson, who wrote fiction under the now more famous name of Lewis Carroll, devised a beautiful voting system that has long fascinated political scientists. However, determining the winner of a Dodgson election is known to be complete for the Θ2p level of the polynomial hierarchy. This implies that unless P=NP no polynomial-time solution to this problem exists, and unless the polynomial hierarchy collapses to NP the problem is not even in NP. Nonetheless, we prove that when the number of voters is much greater than the number of candidates—although the number of voters may still be polynomial in the number of candidates—a simple greedy algorithm very frequently finds the Dodgson winners in such a way that it “knows” that it has found them, and furthermore the algorithm never incorrectly declares a nonwinner to be a winner.

Keywords

Computational social choise Dodgson elections Lewis Carroll Frequently self-knowingly correct heuristics 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Ausiello, G., Crescenzi, P., Protasi, M.: Approximate solution of NP optimization problems. Theor. Comput. Sci. 150(1), 1–55 (1995) MATHCrossRefMathSciNetGoogle Scholar
  2. Alon, N., Spencer, J.: The Probabilistic Method, 2nd edn. Wiley–Interscience, New York (2000) MATHGoogle Scholar
  3. Black, D.: The Theory of Committees and Elections. Cambridge University Press, Cambridge (1958) MATHGoogle Scholar
  4. Brown, D.: A probabilistic analysis of a greedy algorithm arising from computational biology. In: Proceedings of the 12th Annual ACM-SIAM Symposium on Discrete Algorithms, pp. 206–207. ACM, New York (2001) Google Scholar
  5. Bogdanov, A., Trevisan, L.: On worst-case to average-case reductions for NP problems. SIAM J. Comput. 36(4), 1119–1159 (2006) MATHCrossRefMathSciNetGoogle Scholar
  6. Bartholdi III, J., Tovey, C., Trick, M.: Voting schemes for which it can be difficult to tell who won the election. Soc. Choice Welf. 6(2), 157–165 (1989) MATHCrossRefMathSciNetGoogle Scholar
  7. Cai, J., Gundermann, T., Hartmanis, J., Hemachandra, L., Sewelson, V., Wagner, K., Wechsung, G.: The boolean hierarchy I: structural properties. SIAM J. Comput. 17(6), 1232–1252 (1988) MATHCrossRefMathSciNetGoogle Scholar
  8. Chernoff, H.: A measure of the asymptotic efficiency for tests of a hypothesis based on the sum of observations. Ann. Math. Stat. 23(4), 493–509 (1952) MATHCrossRefMathSciNetGoogle Scholar
  9. Chang, L., Korsh, J.: Canonical coin changing and greedy solutions. J. ACM 23(3), 418–422 (1976) MATHMathSciNetGoogle Scholar
  10. Cormen, T., Leiserson, C., Rivest, R., Stein, C.: Introduction to Algorithms, 2nd edn. MIT Press/McGraw–Hill, Cambridge/New York (2001) MATHGoogle Scholar
  11. Conitzer, V., Sandholm, T.: Nonexistence of voting rules that are usually hard to manipulate. In: Proceedings of the 21st National Conference on Artificial Intelligence, pp. 627–634. AAAI Press, Menlo Park (2006) Google Scholar
  12. de Borda, J.: Mémoire sur les élections au scrutin. Hist. Acad. Roy. Sci. Ann. 1781 (1784) Google Scholar
  13. de Caritat, M.J.A.N.: Marquis de Condorcet. Essai sur l’application de l’analyse à la probabilité des décisions rendues à la pluralité des voix (1785). Facsimile reprint of original published in Paris, 1972, by the Imprimerie Royale Google Scholar
  14. Dodgson, C.: A method of taking votes on more than two issues. Pamphlet printed by the Clarendon Press, Oxford, and headed “not yet published” (see the discussions in McLean and Urken (1995) and Black (1958), both of which reprint this paper) (1876) Google Scholar
  15. Downey, R.: Parameterized complexity for the skeptic. In: Proceedings of the 18th Annual IEEE Conference on Computational Complexity, pp. 147–168. IEEE Computer Society, Los Alamitos (2003) CrossRefGoogle Scholar
  16. Downey, R., Fellows, M.: Parameterized Complexity. Springer, Berlin (1999) Google Scholar
  17. Erdélyi, G., Hemaspaandra, L., Rothe, J., Spakowski, H.: On approximating optimal weighted lobbying, and frequency of correctness versus average-case polynomial time. Technical Report TR-914, Department of Computer Science, University of Rochester, Rochester, NY (March 2007) Google Scholar
  18. Faliszewski, P., Hemaspaandra, E., Hemaspaandra, L.: The complexity of bribery in elections. In: Proceedings of the 21st National Conference on Artificial Intelligence, pp. 641–646. AAAI Press, Menlo Park (2006a) Google Scholar
  19. Faliszewski, P., Hemaspaandra, E., Hemaspaandra, L.: How hard is bribery in elections? Technical Report TR-895, Department of Computer Science, University of Rochester, Rochester, NY, April 2006. Revised (September 2006b) Google Scholar
  20. Faliszewski, P., Hemaspaandra, E., Hemaspaandra, L., Rothe, J.: Llull and Copeland voting broadly resist bribery and control. In: Proceedings of the 22nd National Conference on Artificial Intelligence, pp. 724–730. AAAI Press, Menlo Park (2007) Google Scholar
  21. Goldberg, A., Marchetti-Spaccamela, A.: On finding the exact solution of a zero-one knapsack problem. In: Proceedings of the 16th ACM Symposium on Theory of Computing, pp. 359–368. ACM, New York (1984) Google Scholar
  22. Hägele, G., Pukelsheim, F.: The electoral writings of Ramon Llull. Stud. Lulliana 41(97), 3–38 (2001) Google Scholar
  23. Hemachandra, L.: The strong exponential hierarchy collapses. J. Comput. Syst. Sci. 39(3), 299–322 (1989) MATHCrossRefMathSciNetGoogle Scholar
  24. Hemaspaandra, E., Hemaspaandra, L.: Computational politics: electoral systems. In: Proceedings of the 25th International Symposium on Mathematical Foundations of Computer Science. Lecture Notes in Computer Science, vol. 1893, pp. 64–83. Springer, Berlin (2000) Google Scholar
  25. Hemaspaandra, E., Hemaspaandra, L., Rothe, J.: Exact analysis of Dodgson elections: Lewis Carroll’s 1876 voting system is complete for parallel access to NP. J. ACM 44(6), 806–825 (1997) MATHMathSciNetGoogle Scholar
  26. Hemaspaandra, E., Spakowski, H., Vogel, J.: The complexity of Kemeny elections. Theor. Comput. Sci. 349(3), 382–391 (2005) MATHMathSciNetGoogle Scholar
  27. Homan, C., Hemaspaandra, L.: Guarantees for the success frequency of an algorithm for finding Dodgson-election winners. In: Proceedings of the 31st International Symposium on Mathematical Foundations of Computer Science. Lecture Notes in Computer Science, vol. 4162, pp. 528–539. Springer, Berlin (2006) Google Scholar
  28. Impagliazzo, R.: A personal view of average-case complexity. In: Proceedings of the 10th Structure in Complexity Theory Conference, pp. 134–147. IEEE Computer Society, Los Alamitos (1995) Google Scholar
  29. Kadin, J.: The polynomial time hierarchy collapses if the boolean hierarchy collapses. SIAM J. Comput. 17(6), 1263–1282 (1988). Erratum appears in the same journal 20(2), 404 MATHCrossRefMathSciNetGoogle Scholar
  30. Kaporis, A., Kirousis, L., Lalas, E.: The probabilistic analysis of a greedy satisfiability algorithm. In: Proceedings of the 10th Annual European Symposium on Algorithms. Lecture Notes in Computer Science, vol. 2461, pp. 574–585. Springer, Berlin (2002) Google Scholar
  31. Lenstra, H. Jr.: Integer programming with a fixed number of variables. Math. Oper. Res. 8(4), 538–548 (1983) MATHCrossRefMathSciNetGoogle Scholar
  32. Levin, L.: Average case complete problems. SIAM J. Comput. 15(1), 285–286 (1986) MATHCrossRefMathSciNetGoogle Scholar
  33. McCabe-Dansted, J., Pritchard, G., Slinko, A.: Approximability of Dodgson’s rule. In: Endriss, U., Lang, J. (eds.) Proceedings of the 1st International Workshop on Computational Social Choice, pp. 331–344. Universiteit van Amsterdam (2006). Available online at staff.science.uva.nl/~ulle/COMSOC-2006/proceedings.html
  34. McLean, I., Urken, A.: Classics of Social Choice. University of Michigan Press, Ann Arbor (1995) Google Scholar
  35. Nanson, E.: Methods of election. Trans. Proc. Roy. Soc. Vic. 19, 197–240 (1882) Google Scholar
  36. Niedermeier, R.: Invitation to fixed-parameter algorithms. Habilitation thesis, University of Tübingen (2002) Google Scholar
  37. Procaccia, A., Rosenschein, J.: Junta distributions and the average-case complexity of manipulating elections. J. Artif. Intell. Res. 28, 157–181 (2007) MATHMathSciNetGoogle Scholar
  38. Protasi, M., Talamo, M.: A new probabilistic model for the study of algorithmic properties of random graph problems. In: Proceedings of the 4th Conference on Fundamentals of Computation Theory. Lecture Notes in Computer Science, vol. 158, pp. 360–367. Springer, Berlin (1983) Google Scholar
  39. Papadimitriou, C., Zachos, S.: Two remarks on the power of counting. In: Proceedings of the 6th GI Conference on Theoretical Computer Science. Lecture Notes in Computer Science, vol. 145, pp. 269–276. Springer, Berlin (1983) Google Scholar
  40. Raffaelli, G., Marsili, M.: Statistical mechanics model for the emergence of consensus. Phys. Rev. E 72(1), 016114 (2005) CrossRefGoogle Scholar
  41. Rothe, J., Spakowski, H., Vogel, J.: Exact complexity of the winner problem for Young elections. Theory Comput. Syst. 36(4), 375–386 (2003) MATHCrossRefMathSciNetGoogle Scholar
  42. Sankoff, D., Kruskal, J. (eds.): Time Warps, String Edits, and Macromolecules: The Theory and Practice of Sequence Computation. Addison–Wesley, Reading (1983) Google Scholar
  43. Slavik, P.: A tight analysis of the greedy algorithm for set cover. J. Algorithms 25(2), 237–254 (1997) MATHCrossRefMathSciNetGoogle Scholar
  44. Spielman, D., Teng, S.: Smoothed analysis: Why the simplex algorithm usually takes polynomial time. J. ACM 51(3), 385–463 (2004) MathSciNetGoogle Scholar
  45. Spakowski, H., Vogel, J.: Θ2p-completeness: A classical approach for new results. In: Proceedings of the 20th Conference on Foundations of Software Technology and Theoretical Computer Science. Lecture Notes in Computer Science, vol. 1974, pp. 348–360. Springer, Berlin (2000) Google Scholar
  46. Spakowski, H., Vogel, J.: The complexity of Kemeny’s voting system. In: Proceedings of the Workshop Argentino de Informática Teórica. Anales Jornadas Argentinas de Informática e Investigación Operativa, vol. 30, pp. 157–168. SADIO (2001) Google Scholar
  47. Tideman, T.: Independence of clones as a criterion for voting rules. Soc. Choice Welf. 4(3), 185–206 (1987) MATHCrossRefMathSciNetGoogle Scholar
  48. Trevisan, L.: Lecture notes on computational complexity. www.cs.berkeley.edu/~luca/notes/complexitynotes02.pdf (Lecture 12) (2002)
  49. Wagner, K.: More complicated questions about maxima and minima, and some closures of NP. Theor. Comput. Sci. 51(1–2), 53–80 (1987) MATHCrossRefGoogle Scholar
  50. Wagner, K.: Bounded query classes. SIAM J. Comput. 19(5), 833–846 (1990) MATHCrossRefMathSciNetGoogle Scholar
  51. Wang, J.: Average-case computational complexity theory. In: Hemaspaandra, L., Selman, A. (eds.) Complexity Theory Retrospective II, pp. 295–328. Springer, Berlin (1997a) Google Scholar
  52. Wang, J.: Average-case intractable NP problems. In: Du, D., Ko, K. (eds.) Advances in Languages, Algorithms, and Complexity, pp. 313–378. Kluwer Academic, Dordrecht (1997b) Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2007

Authors and Affiliations

  1. 1.Department of Computer ScienceRochester Institute of TechnologyRochesterUSA
  2. 2.Department of Computer ScienceUniversity of RochesterRochesterUSA

Personalised recommendations