Journal of Heuristics

, Volume 15, Issue 4, pp 351–379 | Cite as

A grasp-knapsack hybrid for a nurse-scheduling problem

  • Melissa D. Goodman
  • Kathryn A. Dowsland
  • Jonathan M. Thompson
Article

Abstract

This paper is concerned with the application of a GRASP approach to a nurse-scheduling problem in which the objective is to optimise a set of preferences subject to a set of binding constraints. The balance between feasibility and optimality is a key issue. This is addressed by using a knapsack model to ensure that the solutions produced by the construction heuristic are easy to repair. Several construction heuristics and neighbourhoods are compared empirically. The best combination is further enhanced by a diversification strategy and a dynamic evaluation criterion. Tests show that it outperforms previously published approaches and finds optimal solutions quickly and consistently.

Keywords

Nurse-scheduling Rostering GRASP Hybrid Knapsack 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Abramson, D.: Constructing school timetables using simulated annealing: sequential and parallel algorithms. Manag. Sci. 37, 98–113 (1991) CrossRefGoogle Scholar
  2. Aickelin, U., Dowsland, K.A.: Exploiting problem structure in a genetic algorithm approach to a nurse rostering problem. J. Sched. 3, 139–153 (2000) MATHCrossRefMathSciNetGoogle Scholar
  3. Aickelin, U., Dowsland, K.A.: An indirect genetic algorithm for a nurse-scheduling problem. Comput. Oper. Res. 31, 761–778 (2004) MATHCrossRefGoogle Scholar
  4. Aickelin, U., Li, J.: An estimation of distribution algorithm for nurse scheduling. Ann. Oper. Res. 155, 289–309 (2007) MATHCrossRefMathSciNetGoogle Scholar
  5. Aiex, R.M., Binato, S., Resende, M.G.C.: Parallel GRASP with path-relinking for job shop scheduling. Parall. Comput. 29, 393–430 (2003) CrossRefMathSciNetGoogle Scholar
  6. Bellanti, F., Carello, G., Della Croce, F., Tadei, R.: A greedy-based neighbourhood search approach to a nurse rostering problem. Eur. J. Oper. Res. 153, 28–40 (2004) MATHCrossRefMathSciNetGoogle Scholar
  7. Berrada, I., Ferland, J.A., Michelon, P.: A multi-objective approach to nurse scheduling with both hard and soft constraints. Socio-Econ. Plan. Sci. 30, 183–193 (1996) CrossRefGoogle Scholar
  8. Binato, S., Hery, W.J., Loewenstern, D.M., Resende, M.G.C.: A GRASP for job shop scheduling. Essays Surv. Metaheuristics 15, 81–100 (2001) Google Scholar
  9. Brusco, M.J., Jacobs, L.W.: Cost analysis of alternative formulations for personnel scheduling in continuous operating organizations. Eur. J. Oper. Res. 86, 249–261 (1995) MATHCrossRefGoogle Scholar
  10. Burke, E., De Causemaecker, P., Vanden Berghe, G.: A hybrid tabu search algorithm for the nurse rostering problem. In: McKay, B., et al. (eds.) Simulated Evolution and Learning. Lecture Notes in Artificial Intelligence, vol. 1585, pp. 187–194. Springer, Berlin (1999) CrossRefGoogle Scholar
  11. Burke, E., Cowling, P., De Causmaecker, P., Vanden Berghe, G.: A memetic approach to the nurse rostering problem. Appl. Intell. 15(3), 199–214 (2001) MATHCrossRefGoogle Scholar
  12. Burke, E., De Causemaecker, P., Petrovic, S., Vanden Berghe, G.: Variable neighbourhood search for nurse rostering problems. In: Resende, M.G.C., de Sousa, J.P. (eds.) METAHEURISTICS: Computer Decision-Making, pp. 153–172. Kluwer Academic, Dordrecht (2003a), Chapter 7 Google Scholar
  13. Burke, E., Kendall, G., Soubeiga, E.: A tabu-search hyperheuristic for timetabling and rostering. J. Heuristics 9, 451–470 (2003b) CrossRefGoogle Scholar
  14. Burke, E., De Causemaecker, P., Vanden Burghe, G., Van Landeghem, H.: The state of the art of nurse rostering. J. Sched. 7, 441–499 (2004) MATHCrossRefMathSciNetGoogle Scholar
  15. Cheang, B., Li, H., Lim, A., Rodrigues, B.: Nurse rostering problems—a bibliographic survey. Eur. J. Oper. Res. 151, 447–460 (2003) MATHCrossRefMathSciNetGoogle Scholar
  16. Dowsland, K.A.: Nurse scheduling with tabu search and strategic oscillation. Eur. J. Oper. Res. 106, 393–407 (1998) MATHCrossRefGoogle Scholar
  17. Dowsland, K.A., Thompson, J.M.: Solving a nurse-scheduling problem with knapsacks, networks and tabu search. J. Oper. Res. Soc. 51, 825–833 (2000) MATHCrossRefGoogle Scholar
  18. Drexl, A., Salewski, F.: Distribution requirements and compactness constraints in school timetabling. Eur. J. Oper. Res. 102, 193–214 (1997) MATHCrossRefGoogle Scholar
  19. Ernst, T., Jiang, H., Krishnamoorthy, M., Sier, D.: Staff scheduling and rostering: a review of applications, methods and models. Eur. J. Oper. Res. 153, 3–27 (2004) MATHCrossRefMathSciNetGoogle Scholar
  20. Feo, T.A., Resende, M.G.C., Smith, S.H.: A greedy randomised adaptive search procedure for maximum independent set. Oper. Res. 42, 860–878 (1994) MATHCrossRefGoogle Scholar
  21. Fleurent, C., Glover, F.: Improved constructive multistart strategies for the quadratic assignment problem using adaptive memory. INFORMS J. Comput. 11, 198–204 (1999) MATHCrossRefMathSciNetGoogle Scholar
  22. Fuller, E.: Tackling scheduling problems using integer programming. Master Thesis, University of Wales Swansea, United Kingdom (1998) Google Scholar
  23. Gupta, S.R., Smith, J.S.: Algorithms for single machine total tardiness scheduling with sequence dependent setups. Eur. J. Oper. Res. 175, 722–739 (2006) MATHCrossRefGoogle Scholar
  24. Gutjahr, W.J., Rauner, M.S.: An ACO algorithm for a dynamic regional nurse-scheduling problem in Austria. Comput. Oper. Res. 34(3), 642–666 (2007) MATHCrossRefGoogle Scholar
  25. Isken, M.: An implicit tour scheduling model with applications in healthcare. Ann. Oper. Res. 128, 91–109 (2004) MATHCrossRefGoogle Scholar
  26. Jaumard, B., Semet, F., Vovor, T.: A generalized linear programming model for nurse scheduling. Eur. J. Oper. Res. 107, 1–18 (1998) MATHCrossRefGoogle Scholar
  27. Laguna, M., González-Velarde, J.L.: A search heuristic for just-in-time scheduling in parallel machines. J. Intell. Manufact. 2, 253–260 (1991) CrossRefGoogle Scholar
  28. Laguna, M., Martí, R.: A GRASP for coloring sparse graphs. Comput. Optim. Appl. 19, 165–178 (2001) MATHCrossRefMathSciNetGoogle Scholar
  29. Lim, A., Rodrigues, B., Zhang, X.: A simulated annealing and hill-climbing algorithm for the travelling tournament problem. Eur. J. Oper. Res. 174, 1459–1478 (2006) MATHCrossRefMathSciNetGoogle Scholar
  30. Martello, S., Toth, P.: Knapsack Problems Wiley, Chichester (1990) MATHGoogle Scholar
  31. Meyer auf’m Hofe, H.: Nurse rostering as constraint satisfaction with fuzzy constraints and inferred control strategies, In: DIMACS Workshop on Constraints Programming and Large Scale Discrete Optimisation, pp. 67–100 (2000) Google Scholar
  32. Michalewicz, Z., Fogel, D.B.: How to Solve It: Modern Heuristics. Springer, Berlin (2004) MATHGoogle Scholar
  33. Moz, M., Pato, M.V.: A genetic algorithm approach to a nurse re-rostering problem. Comput. Oper. Res. 34(3), 667–691 (2007) MATHCrossRefGoogle Scholar
  34. Parr, D., Thompson, J.: Solving the multi-objective nurse scheduling problem with a weighted cost function. Ann. Oper. Res. 155, 279–288 (2007) MATHCrossRefMathSciNetGoogle Scholar
  35. Petrovic, S., Beddoe, G., Vanden Berghe, G.: Storing and adapting repair experiences in personnel rostering. In: Burke, E.K., De Causemaecker, P. (eds.) Practice and Theory of Automated Timetabling, Fourth International Conference, Gent. Lecture Notes in Computer Science, vol. 2740, pp. 149–166. Springer, Berlin (2003) Google Scholar
  36. Resende, M.G.C.: Greedy Randomized Adaptive Search Procedures (GRASP). Encyclopedia of Optimisation, vol. 2, pp. 373–382. Kluwer Academic, Dordrecht (2001) Google Scholar
  37. Rosenbloom, E.S., Goertzen, N.F.: Cyclic nurse scheduling. Eur. J. Oper. Res. 31, 19–23 (1987) CrossRefGoogle Scholar
  38. Thompson, J.M., Dowsland, K.A.: Variants of simulated annealing for the examination timetabling problem. Ann. Oper. Res. 63, 637–648 (1996) CrossRefGoogle Scholar
  39. Wright, M.B.: Scheduling cricket umpires. J. Oper. Res. Soc. 42, 447–452 (1991) CrossRefGoogle Scholar
  40. Zhu, Y., Lim, A.: Crane scheduling with non-crossing constraint. J. Oper. Res. Soc. 57, 1464–1471 (2006) MATHCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2007

Authors and Affiliations

  • Melissa D. Goodman
    • 1
  • Kathryn A. Dowsland
    • 1
    • 2
    • 3
  • Jonathan M. Thompson
    • 1
  1. 1.School of MathematicsCardiff UniversityCardiffUK
  2. 2.Gower Optimal Algorithms Ltd.SwanseaUK
  3. 3.School of Computer Science and ITUniversity of NottinghamNottinghamUK

Personalised recommendations