Advertisement

Journal of Heuristics

, Volume 15, Issue 2, pp 109–132 | Cite as

An evaluation of constructive heuristic methods for solving the alternative subgraphs assembly line balancing problem

  • Liliana Capacho
  • Rafael Pastor
  • Alexander Dolgui
  • Olga Guschinskaya
Article

Abstract

This paper evaluates a set of constructive heuristic methods developed to solve the novel Alternative Subgraphs Assembly Line Balancing Problem (ASALBP), which considers variants for different parts of a production or manufacturing process. Each variant is represented by a precedence subgraph that defines the tasks to be performed and their processing times. The proposed methods use priority rules and random choice to select the assembly subgraphs and to assign the tasks to the stations in order to minimize the number of required workstations. The methods are evaluated by a computational experiment based on medium- and large-scale benchmark problems.

Keywords

Assembly line balancing 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Agpak, K., Gökçen, H.: Assembly line balancing: two resource constrained cases. Int. J. Prod. Econ. 96, 129–140 (2005) CrossRefGoogle Scholar
  2. Amen, M.: Heuristic methods for cost-oriented assembly line balancing: a comparison on solution quality and computing time. Int. J. Prod. Econ. 69, 255–264 (2001) CrossRefGoogle Scholar
  3. Andrés, C., Miralles, C., Pastor, R.: Balancing and scheduling tasks in assembly lines with sequence-dependent setup times. Eur. J. Oper. Res. (in press, Corrected proof, Available online 15 November 2006, doi: 10.1016/j.ejor.2006.07.044) (2006)
  4. Arcus, A.L.: COMSOAL: a computer method of sequencing operations for assembly lines. Int. J. Prod. Res. 4, 259–277 (1966) CrossRefGoogle Scholar
  5. Bard, J.F., Dar-El, E., Shtub, A.: An analytic framework for sequencing mixed model assembly lines. Int. J. Prod. Res. 30, 35–48 (1992) zbMATHCrossRefGoogle Scholar
  6. Baybars, I.: A survey of exact algorithms for the simple assembly line balancing problem. Manag. Sci. 32, 909–932 (1986) zbMATHCrossRefMathSciNetGoogle Scholar
  7. Becker, C., Scholl, A.: A survey on problems and methods in generalized assembly line balancing. Eur. J. Oper. Res. 168, 694–715 (2006) zbMATHCrossRefMathSciNetGoogle Scholar
  8. Boctor, F.: A multiple-rule heuristic for assembly line balancing. J. Oper. Res. Soc. 46, 62–69 (1995) zbMATHCrossRefGoogle Scholar
  9. Boysen, N., Fliedner, M., Scholl, A.: Assembly line balancing: which model to use when? Int. J. Prod. Econ. (in press, Corrected proof, Available online 7 March 2007, doi: 10.1016/j.ijpe.2007.02.026) (2006)
  10. Boysen, N., Fliedner, M., Scholl, A.: A classification of assembly line balancing problems. Eur. J. Oper. Res. 183, 674–693 (2007) zbMATHCrossRefGoogle Scholar
  11. Bukchin, J., Rubinovitz, J.: A weighted approach for assembly line design with station paralleling and equipment selection. IIE Trans. 35, 73–85 (2003) CrossRefGoogle Scholar
  12. Capacho, L., Pastor, R.: ASALBP: the alternative subgraphs assembly line balancing problem. Int. J. Prod. Res. (first published on 9 April 2007, doi:  10.1080/00207540701197010) (2007)
  13. Capacho, L., Pastor, R.: The ASALB problem with processing alternatives involving different tasks: definition, formalization and resolution. In: Lecture Notes in Computer Science, vol. 3982, pp. 554–563 (2006) Google Scholar
  14. Capacho, L., Pastor, R., Guschinskaya, O., Dolgui, A.: Heuristic methods to solve the alternative subgraphs assembly line balancing problem. In: IEEE Conference on Automation Science and Engineering—CASE 2006, 8–11 October 2006, Shanghai, China (2006) Google Scholar
  15. Corominas, A., Pastor, R., Plans, J.: Balancing assembly line with skilled and unskilled workers. OMEGA (in press, Corrected proof, Available online 9 May 2006, doi: 10.1016/j.omega.2006.03.003) (2006)
  16. Das, S., Nagendra, P.: Selection of routes in a flexible manufacturing facility. Int. J. Prod. Econ. 48, 237–247 (1997) CrossRefGoogle Scholar
  17. DePuy, G., Whitehouse, G.: Applying the COMSOAL computer heuristic to the constrained resource allocation problem. Comput. Ind. Eng. 38, 413–422 (2000) CrossRefGoogle Scholar
  18. Dolgui, A., Finel, B., Guschinsky, N., Levin, G.: A heuristic approach for transfer line balancing. J. Intell. Manuf. 16, 159–171 (2005) CrossRefGoogle Scholar
  19. Erel, E., Sarin, S.C.: A survey of the assembly line balancing procedures. Prod. Plan. Control 9, 414–434 (1998) CrossRefGoogle Scholar
  20. Gamberini, R., Grassi, A., Rimini, B.: A new multi-objective heuristic algorithm for solving the stochastic assembly line re-balancing problem. Int. J. Prod. Econ. 102, 226–243 (2005) CrossRefGoogle Scholar
  21. Ghosh, S., Gagnon, R.J.: A comprehensive literature review and analysis of the design, balancing and scheduling of assembly systems. Int. J. Prod. Res. 27, 637–670 (1989) CrossRefGoogle Scholar
  22. Hackman, S.T., Magazine, M.J., Wee, T.S.: Fast, effective algorithms for simple assembly line balancing problems. Oper. Res. 37, 916–924 (1989) zbMATHCrossRefGoogle Scholar
  23. Lambert, A.J.D.: Generation of assembly graphs by systematic analysis of assembly structures. Eur. J. Oper. Res. 168, 932–951 (2006) zbMATHCrossRefGoogle Scholar
  24. Miltenburg, J.: Balancing and scheduling mixed-model U-shaped production lines. Int. J. Flex. Manuf. Syst. 14, 119–151 (2002) CrossRefGoogle Scholar
  25. Pastor, R., Andres, C., Duran, A., Perez, M.: Tabu search algoritms for an industrial multi-product, multi-objective assembly line balancing problem, with reduction of task dispertion. J. Oper. Res. Soc. 53, 1317–1323 (2002) zbMATHCrossRefGoogle Scholar
  26. Pinto, P.A., Dannenbring, D.G., Khumawala, B.M.: A branch and bound algorithm for assembly line balancing with paralleling. Int. J. Prod. Res. 13, 183–196 (1975) CrossRefGoogle Scholar
  27. Pinto, P.A., Dannenbring, D.G., Khumawala, B.M.: Assembly line balancing with processing alternatives: an application. Manag. Sci. 29, 817–830 (1983) CrossRefMathSciNetGoogle Scholar
  28. Rekiek, B., Dolgui, A., Delchambre, A., Bratcu, A.: State of art of optimization methods for assembly line design. Ann. Rev. Control 26, 163–174 (2002) CrossRefGoogle Scholar
  29. Sarin, S., Erel, E., Dar-El, E.: A methodology for solving single-model, stochastic assembly line blancing problem. Int. J. Manag. Sci. 27, 525–535 (1999) Google Scholar
  30. Sawik, T.: Monolithic vs. hierarchical balancing and scheduling of a flexible assembly line. Eur. J. Oper. Res. 109, 1–23 (2002) Google Scholar
  31. Scholl, A.: Balancing and Sequencing of Assembly Lines. Physica-Verlag, Wurzburg (1999) Google Scholar
  32. Scholl, A., Becker, C.: State-of-the-art exact and heuristic solution procedures for simple assembly line balancing. Eur. J. Oper. Res. 168, 666–693 (2006) zbMATHCrossRefMathSciNetGoogle Scholar
  33. Scholl, A., Voß, S.: Simple assembly line balancing-heuristic approaches. J. Heuristics 2, 217–244 (1996) CrossRefGoogle Scholar
  34. Scholl, A., Boysen, N., Fliedner, M.: The sequence-dependent assembly line balancing problem. Oper. Res. Spectr. (published online 17 November 2006, doi: 10.1007/s00291-006-0070-3) (2007)
  35. Senin, N., Groppetti, R., Wallace, D.: Concurrent assembly planning with genetic algorithms. Robot. Comput. Integr. Manuf. 16, 65–72 (2000) CrossRefGoogle Scholar
  36. Spina, R., Galantucci, M., Dassisti, M.: A hybrid approach to the single line scheduling problem with multiple products and sequence-dependent time. Comput. Ind. Eng. 45, 573–583 (2003) CrossRefGoogle Scholar
  37. Talbot, F.B., Patterson, J.H., Gehrlein, W.V.: A comparative evaluation of heuristic line balancing techniques. Manag. Sci. 32, 431–453 (1986) CrossRefGoogle Scholar
  38. Tseng, H.E., Tang, C.E.: A sequential consideration for assembly sequence planning and assembly line balancing using the connector concept. Int. J. Prod. Res. 44, 97–166 (2006) CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2007

Authors and Affiliations

  • Liliana Capacho
    • 1
    • 2
  • Rafael Pastor
    • 2
  • Alexander Dolgui
    • 3
  • Olga Guschinskaya
    • 3
  1. 1.University of Los AndesI.O. Department, EISULA and CESIMOMéridaVenezuela
  2. 2.Instituto de Organización y Control de Sistemas Industriales, ETS de Ingeniería Industrial de BarcelonaUniversitat Politècnica de CatalunyaBarcelonaSpain
  3. 3.Division for Industrial Engineering and Computer SciencesEcole des MinesSt EtienneFrance

Personalised recommendations