Journal of Heuristics

, Volume 15, Issue 1, pp 43–75 | Cite as

On the efficiency of evolutionary fuzzy clustering

  • Ricardo J. G. B. CampelloEmail author
  • Eduardo R. Hruschka
  • Vinícius S. Alves


This paper tackles the problem of showing that evolutionary algorithms for fuzzy clustering can be more efficient than systematic (i.e. repetitive) approaches when the number of clusters in a data set is unknown. To do so, a fuzzy version of an Evolutionary Algorithm for Clustering (EAC) is introduced. A fuzzy cluster validity criterion and a fuzzy local search algorithm are used instead of their hard counterparts employed by EAC. Theoretical complexity analyses for both the systematic and evolutionary algorithms under interest are provided. Examples with computational experiments and statistical analyses are also presented.


Fuzzy clustering Evolutionary algorithms Complexity analyses Performance comparison 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Alves, V.S., Campello, R.J.G.B., Hruschka, E.R.: A fuzzy variant of an evolutionary algorithm for clustering. In: Proc. IEEE Int. Conf. on Fuzzy Systems, London, UK, pp. 375–380 (2007) Google Scholar
  2. Babu, G.P., Murty, M.N.: Clustering with evolution strategies. Pattern Recognit. 27(2), 321–329 (1994) CrossRefGoogle Scholar
  3. Babuška, R.: Fuzzy Modeling for Control. Kluwer, Dordrecht (1998) Google Scholar
  4. Backer, E., Jain, A.K.: A clustering performance measure based on fuzzy set decomposition. IEEE Trans. Pattern Anal. Mach. Intell. 3, 66–75 (1981) zbMATHCrossRefGoogle Scholar
  5. Bandyopadhyay, S., Maulik, U.: Genetic clustering for automatic evolution of clusters and application to image classification. Pattern Recognit. 35, 1197–1208 (2002) zbMATHCrossRefGoogle Scholar
  6. Barni, M., Cappellini, V., Mecocci, A.: A possibilistic approach to clustering. IEEE Trans. Fuzzy Syst. 4, 393–396 (1996) CrossRefGoogle Scholar
  7. Bezdek, J.C.: Cluster validity with fuzzy sets. J. Cybern. 3, 58–73 (1974) CrossRefMathSciNetGoogle Scholar
  8. Bezdek, J.C.: Mathematical models for systemics and taxonomy. In: Proc. 8th Int. Conf. on Numerical Taxonomy, San Francisco, USA (1975) Google Scholar
  9. Bezdek, J.C.: Pattern Recognition with Fuzzy Objective Function Algorithm. Plenum, New York (1981) Google Scholar
  10. Bezdek, J.C., Dunn, J.: Optimal fuzzy partition: a heuristic for estimating the parameters in a mixture of normal distributions. IEEE Trans. Comput. C-24, 835–838 (1975) CrossRefGoogle Scholar
  11. Bezdek, J.C., Hathaway, R.J.: Optimization of fuzzy clustering criteria using genetic algorithms. In: Proc. IEEE WCCI, USA, Orlando, pp. 589–594 (1994) Google Scholar
  12. Bezdek, J.C., Pal, N.R.: Some new indexes of cluster validity. IEEE Trans. Syst. Man Cybern. B 28, 301–315 (1998) CrossRefGoogle Scholar
  13. Bezdek, J.C., Hathaway, R.J., Howard, R.E., Wilson, C.A., Windham, M.P.: Local convergence analysis of a grouped variable version of coordinate descent. J. Optim. Theory Appl. 54, 471–477 (1987a) zbMATHCrossRefMathSciNetGoogle Scholar
  14. Bezdek, J.C., Hathaway, R.J., Sabin, M.J., Tucker, H.T.: Convergence theory for fuzzy C-means: counterexamples and repairs. IEEE Trans. Syst. Man Cybern. SMC-17, 873–877 (1987b) Google Scholar
  15. Campello, R.J.G.B., Hruschka, E.R.: A fuzzy extension of the silhouette width criterion for cluster analysis. Fuzzy Sets Syst. 157(21), 2858–2875 (2006) zbMATHCrossRefMathSciNetGoogle Scholar
  16. Campello, R.J.G.B., Hruschka, E.R.: Fuzzy silhouette: an alternative cluster validity measure. In: Proc. 11th IFSA World Congress, Beijing, China, pp. 603–608 (2005) Google Scholar
  17. Cannon, R.L., Dave, J.V., Bezdek, J.C.: Efficient implementation of the fuzzy C-means clustering algorithms. IEEE Trans. Pattern Anal. Mach. Intell. PAMI-8, 248–255 (1986) Google Scholar
  18. Cheng, T.W., Goldgof, D.B., Hall, L.O.: Fast fuzzy clustering. Fuzzy Sets Syst. 93, 49–56 (1998) zbMATHCrossRefGoogle Scholar
  19. Davé, R.N., Krishnapuram, R.: Robust clustering methods: a unified view. IEEE Trans. Fuzzy Syst. 5, 270–293 (1997) CrossRefGoogle Scholar
  20. Davis, L.: Handbook of Genetic Algorithms. International Thomson Computer Press (1996) Google Scholar
  21. Dumitrescu, D., Lazzerini, B., Jain, L.C.: Fuzzy Sets and their Application to Clustering and Training. CRC Press, New York (2000) Google Scholar
  22. Dunn, J.C.: A fuzzy relative of the isodata process and its use in detecting compact well-separated clusters. J. Cybern. 3, 32–57 (1973) zbMATHCrossRefMathSciNetGoogle Scholar
  23. Egan, M.A., Krishnamoorthy, M., Rajan, K.: Comparative study of a genetic fuzzy C-means algorithm and a validity guided fuzzy C-means algorithm for locating clusters in noisy data. In: Proc. IEEE WCCI, Anchorage, USA, pp. 440–445 (1998) Google Scholar
  24. El-Sonbaty, Y., Ismail, M.A.: Fuzzy clustering for symbolic data. IEEE Trans. Fuzzy Syst. 6, 195–204 (1998) CrossRefGoogle Scholar
  25. Eschrich, S., Ke, J., Hall, L.O., Goldgof, D.B.: Fast accurate fuzzy clustering through data reduction. IEEE Trans. Fuzzy Syst. 11, 262–270 (2003) CrossRefGoogle Scholar
  26. Everitt, B.S., Landau, S., Leese, M.: Cluster Analysis, 4th edn. Arnold, Paris (2001) Google Scholar
  27. Falkenauer, E.: Genetic Algorithms and Grouping Problems. Wiley, New York (1998) Google Scholar
  28. Fogel, D.B.: Evolutionary Computation: Toward a New Philosophy of Machine Intelligence. IEEE Press, New York (1995) Google Scholar
  29. Fogel, D.B., Simpson, P.K.: Evolving fuzzy clusters. In: Proc. IEEE Int. Conf. on Neural Networks, San Francisco, USA, pp. 1829–1834 (1993) Google Scholar
  30. Gath, I., Geva, A.B.: Unsupervised optimal fuzzy clustering. IEEE Trans. Pattern Anal. Mach. Intell. 11, 773–781 (1989) CrossRefGoogle Scholar
  31. Gustafson, D.E., Kessel, W.C.: Fuzzy clustering with a fuzzy covariance matrix. In: Proc. IEEE Conf. on Decision and Control, San Diego, USA, pp. 761–766 (1979) Google Scholar
  32. Halkidi, M., Batistakis, Y., Vazirgiannis, M.: On clustering validation techniques. J. Intell. Inf. Syst. 17, 107–145 (2001) zbMATHCrossRefGoogle Scholar
  33. Hall, L.O., Özyurt, B.: Scaling genetically guided fuzzy clustering. In: Proc. ISUMA-NAFIPS, Maryland, USA, pp. 328–332 (1995) Google Scholar
  34. Hall, L.O., Bezdek, J.C., Boggavarpu, S., Bensaid, A.: Genetic fuzzy clustering. In: Proc. NAFIPS, San Antonio, USA, pp. 411–415 (1994) Google Scholar
  35. Hall, L.O., Özyurt, I.B., Bezdek, J.C.: Clustering with a genetically optimized approach. IEEE Trans. Evol. Comput. 3(2), 103–112 (1999) CrossRefGoogle Scholar
  36. Hathaway, R.J., Bezdek, J.C.: NERF C-means: non-euclidean relational fuzzy clustering. Pattern Recognit. 27, 429–437 (1994) CrossRefGoogle Scholar
  37. Hathaway, R.J., Bezdek, J.C.: Optimization of clustering criteria by reformulation. IEEE Trans. Fuzzy Syst. 3, 241–245 (1995) CrossRefGoogle Scholar
  38. Hathaway, R.J., Bezdek, J.C.: Fuzzy C-means clustering of incomplete data. IEEE Trans. Syst. Man Cybern. Part B 31, 735–744 (2001) CrossRefGoogle Scholar
  39. Hathaway, R.J., Devenport, J.W., Bezdek, J.C.: Relational dual of the C-means clustering algorithms. Pattern Recognit. 22, 205–212 (1989) zbMATHCrossRefGoogle Scholar
  40. Hathaway, R.J., Bezdek, J.C., Hu, Y.: Generalized fuzzy C-means clustering strategies using L p norm distances. IEEE Trans. Fuzzy Syst. 8, 576–582 (2000) CrossRefGoogle Scholar
  41. Höppner, F.: Speeding up fuzzy C-means: using a hierarchical data organization to control the precision of membership calculation. Fuzzy Sets Syst. 128, 365–376 (2002) zbMATHCrossRefGoogle Scholar
  42. Höppner, F., Klawonn, F., Kruse, R., Runkler, T.: Fuzzy Cluster Analysis: Methods for Classification, Data Analysis and Image Recognition. Wiley, New York (1999) zbMATHGoogle Scholar
  43. Hruschka, E.R., Ebecken, N.F.F.: A genetic algorithm for cluster analysis. Intell. Data Anal. 7(1), 15–25 (2003) Google Scholar
  44. Hruschka, E.R., Campello, R.J.G.B., de Castro, L.N.: Evolutionary search for optimal fuzzy C-means clustering. In: Proc. Int. Conf. on Fuzzy Systems, Budapest, Hungary, pp. 685–690 (2004a) Google Scholar
  45. Hruschka, E.R., de Castro, L.N., Campello, R.J.G.B.: Evolutionary algorithms for clustering gene-expression data. In: Proc. IEEE Int. Conf. on Data Mining, Brighton, England, pp. 403–406 (2004b) Google Scholar
  46. Hruschka, E.R., Campello, R.J.G.B., de Castro, L.N.: Evolving clusters in gene-expression data. Inf. Sci. 176, 1898–1927 (2006) CrossRefGoogle Scholar
  47. Hruschka, E.R., de Castro, L.N., Campello, R.J.G.B.: Clustering gene-expression data: a hybrid approach that iterates between k-means and evolutionary search. In: Grosan, C., Abraham, A., e Ishibuchi, A. (eds.) Hybrid Evolutionary Algorithms, vol. 75, pp. 313–335. Springer (2007) Google Scholar
  48. Hung, M.-C., Yang, D.-L.: An efficient fuzzy C-means clustering algorithm. In: Proc. IEEE Int. Conf. on Data Mining (2001) Google Scholar
  49. Jain, A.K., Dubes, R.C.: Algorithms for Clustering Data. Prentice-Hall, Englewood Cliffs (1988) zbMATHGoogle Scholar
  50. Kamel, M.S., Selim, S.Z.: New algorithms for solving the fuzzy clustering problem. Pattern Recognit. 27, 421–428 (1994) CrossRefGoogle Scholar
  51. Kaufman, L., Rousseeuw, P.J.: Finding Groups in Data—An Introduction to Cluster Analysis. Wiley Series in Probability and Mathematical Statistics (1990) Google Scholar
  52. Kaymak, U., Setnes, M.: Fuzzy clustering with volume prototypes and adaptive cluster merging. IEEE Trans. Fuzzy Syst. 10, 705–712 (2002) CrossRefGoogle Scholar
  53. Kersten, P.R.: Implementing the fuzzy C-medians clustering algorithm. In: Proc. IEEE Int. Conf. on Fuzzy Systems, Barcelona, Spain, pp. 957–962 (1997) Google Scholar
  54. Klawonn, F.: Fuzzy clustering with evolutionary algorithms. In: Proc. of 7th IFSA World Congress, Prague, Czech Republic, pp. 312–323 (1997) Google Scholar
  55. Kolen, J.F., Hutcheson, T.: Reducing the time complexity of the fuzzy C-means algorithm. IEEE Trans. Fuzzy Syst. 10, 263–267 (2002) CrossRefGoogle Scholar
  56. Krishnapuram, R., Freg, C.-P.: Fitting an unknown number of lines and planes to image data through compatible cluster merging. Pattern Recognit. 25, 385–400 (1992) CrossRefGoogle Scholar
  57. Krishnapuram, R., Keller, J.M.: A possibilistic approach to clustering. IEEE Trans. Fuzzy Syst. 1, 98–110 (1993) CrossRefGoogle Scholar
  58. Krishnapuram, R., Keller, J.M.: The possibilistic C-means algorithm: insights and recommendations. IEEE Trans. Fuzzy Syst. 4, 385–393 (1996) CrossRefGoogle Scholar
  59. Krishnapuram, R., Joshi, A., Yi, L.: A fuzzy relative of the k-medoids algorithm with application to web document and snippet clustering. In: Proc. IEEE Int. Conf. on Fuzzy Systems, Seoul, Korea, pp. 1281–1286 (1999) Google Scholar
  60. Liu, H., Li, J., Chapman, M.A.: Automated road extraction from satellite imagery using hybrid genetic algorithms and cluster analysis. J. Environ. Inf. 1(2), 40–47 (2003) CrossRefGoogle Scholar
  61. Liu, J., Xie, W.: A genetics-based approach to fuzzy clustering. In: Proc. Int. Conf. on Fuzzy Systems, Yokohama, Japan, pp. 2233–2240 (1995) Google Scholar
  62. Maulik, U., Bandyopadhyay, S.: Fuzzy partitioning using real coded variable length genetic algorithm for pixel classification. IEEE Trans. Geosci. Remote Sens. 41(5), 1075–1081 (2003) CrossRefGoogle Scholar
  63. Miyamoto, S., Augusta, Y.: Efficient algorithms for L p fuzzy C-means and their termination properties. Control Cybern. 25, 421–436 (1995) Google Scholar
  64. Pakhira, M.K., Bandyopadhyay, S., Maulik, U.: A study of some fuzzy cluster validity indices, genetic clustering and application to pixel classification. Fuzzy Sets Syst. 155, 191–214 (2005) CrossRefMathSciNetGoogle Scholar
  65. Pal, N.R., Bezdek, J.C.: On cluster validity for the fuzzy C-means model. IEEE Trans. Fuzzy Syst. 3, 370–379 (1995) CrossRefGoogle Scholar
  66. Pal, N.R., Bezdek, J.C.: Complexity reduction for ‘large image’ processing. IEEE Trans. Syst. Man Cybern. Part B 32, 598–611 (2002) CrossRefGoogle Scholar
  67. Pal, N.R., Pal, K., Bezdek, J.C.: A mixed C-means clustering model. In: Proc. IEEE Int. Conf. on Fuzzy Systems, Barcelona, Spain, pp. 11–21 (1997) Google Scholar
  68. Pal, N.R., Pal, K., Keller, J.M., Bezdek, J.C.: A possibilistic fuzzy C-means clustering algorithm. IEEE Trans. Fuzzy Syst. 13, 517–530 (2005) CrossRefMathSciNetGoogle Scholar
  69. Park, H.-S., Yoo, S.-H., Cho, S.-B.: Evolutionary fuzzy clustering algorithm with knowledge-based evaluation and applications for gene expression profiling. J. Comput. Theor. Nanosci. 2, 1–10 (2005) CrossRefGoogle Scholar
  70. Rezaee, M.R., Lelieveldt, B.P.F., Reiber, J.H.C.: A new cluster validity index for the fuzzy c-mean. Pattern Recognit. Lett. 19, 237–246 (1998) zbMATHCrossRefGoogle Scholar
  71. Ruspini, E.: Numerical methods for fuzzy clustering. Inf. Sci. 2, 319–350 (1970) zbMATHCrossRefGoogle Scholar
  72. Timm, H., Borgelt, C., Döring, C., Kruse, R.: An extension to possibilistic fuzzy cluster analysis. Fuzzy Sets Syst. 147, 3–16 (2004) zbMATHCrossRefGoogle Scholar
  73. Triola, M.F.: Elementary Statistics. Addison Wesley Longman (1999) Google Scholar
  74. Van Le, T.: Evolutionary fuzzy clustering. In: Proc. IEEE Int. Conf. on Evolutionary Computation, Perth, Australia, pp. 753–758 (1995) Google Scholar
  75. Windham, M.P.: Cluster validity for fuzzy clustering algorithms. Fuzzy Sets Syst. 5, 177–185 (1981) zbMATHCrossRefGoogle Scholar
  76. Xie, X.L., Beni, G.: A validity measure for fuzzy clustering. IEEE Trans. Pattern Anal. Mach. Intell. 13, 841–847 (1991) CrossRefGoogle Scholar
  77. Yuan, B., Klir, G.J., Swan-Stone, J.F.: Evolutionary fuzzy C-means clustering algorithm. In: Proc. Int. Conf. on Fuzzy Systems, Yokohama, Japan, pp. 2221–2226 (1995) Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2007

Authors and Affiliations

  • Ricardo J. G. B. Campello
    • 1
    Email author
  • Eduardo R. Hruschka
    • 1
  • Vinícius S. Alves
    • 2
  1. 1.Department of Computer SciencesUniversity of São Paulo at São CarlosSão-CarlosBrazil
  2. 2.COPOP/UniSantosSantosBrazil

Personalised recommendations