Journal of Heuristics

, Volume 14, Issue 4, pp 359–374 | Cite as

Solving a bi-objective nurse rerostering problem by using a utopic Pareto genetic heuristic

Article

Abstract

Nurse rerostering arises when at least one nurse announces that she will be unable to undertake the tasks previously assigned to her. The problem amounts to building a new roster that satisfies the hard constraints already met by the current one and, as much as possible, fulfils two groups of soft constraints which define the two objectives to be attained. A bi-objective genetic heuristic was designed on the basis of a population of individuals characterised by pairs of chromosomes, whose fitness complies with the Pareto ranking of the respective decoded solution. It includes an elitist policy, as well as a new utopic strategy, introduced for purposes of diversification. The computational experiments produced promising results for the practical application of this approach to real life instances arising from a public hospital in Lisbon.

Keywords

Nurse scheduling Rerostering Bi-objective heuristics Genetic algorithms 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Aickelin, U., Dowsland, K.A.: An indirect genetic algorithm for a nurse scheduling problem. Comput. Oper. Res. 31(5), 761–778 (2004) MATHCrossRefGoogle Scholar
  2. Burke, E.K., De Causmaecker, P., Vanden Berghe, G., Van Landerghem, H.: The state of the art of nurse rostering. J. Sched. 7(6), 411–499 (2004) CrossRefGoogle Scholar
  3. Burke, E.K., Cowling, P., De Causmaecker, P., Vanden Berghe, G.: A memetic approach to the nurse rostering problem. Appl. Intell. 15(3), 199–214 (2001) MATHCrossRefGoogle Scholar
  4. Carrasco, M.P., Pato, M.V.: A multiobjective genetic algorithm for the class/teacher timetabling problem. In: Burke, E., Erben, W. (eds.) Practice and Theory of Automated Timetabling III: Third International Conference PATAT 2000, selected revised papers. Lecture Notes in Computer Science, vol. 2079, pp. 3–17. Springer, Berlin (2001) Google Scholar
  5. Cheang, B., Li, H., Lim, A., Rodrigues, B.: Nurse rostering problems—a bibliographic survey. Eur. J. Oper. Res. 151(3), 447–460 (2003) MATHCrossRefMathSciNetGoogle Scholar
  6. Collette, Y., Siarry, P.: Three new metrics to measure the convergence of the metaheuristics towards the Pareto frontier and the aesthetic of a set of solutions in biobjective optimization. Comput. Oper. Res. 32(4), 773–792 (2005) MATHCrossRefGoogle Scholar
  7. Cumming, A., Paechter, B., Rankin, R.: Post-publication timetabling. In: Practice and Theory of Automated Timetabling III: Third International Conference PATAT 2000, extended abstracts, pp. 107–108, 2000 Google Scholar
  8. Davis, L.: Handbook of Genetic Algorithms. Van Nostrand Reinhold, New York (1991) Google Scholar
  9. Deb, K.: Multi-Objective Optimization Using Evolutionary Algorithms. Wiley, New York (2001) MATHGoogle Scholar
  10. Deb, K., Pratap, A., Aggarwal, S., Meyarivan, T.: A fast and elitist multiobjective genetic algorithm: NSGA-II. IEEE Trans. Evol. Comput. 6(2), 182–197 (2002) CrossRefGoogle Scholar
  11. Ernst, A.T., Jiang, H., Krishnamoorthy, M., Sier, D.: Staff scheduling and rostering: a review of applications, methods and models. Eur. J. Oper. Res. 153(1), 3–27 (2004) MATHCrossRefMathSciNetGoogle Scholar
  12. Fonseca, C., Knowles, J., Thiele, L., Zitzler, E.: A tutorial on the performance assessment of stochastic multiobjective optimizers. In: Evolutionary Multi-Criterion Optimization Conference EMO 2005, Guanajuato, Mexico, 2005 Google Scholar
  13. Gandibleux, X.: Journée de Travail PM20 Programmation Mathématique Multiobjectif, Tours (November 2000) Google Scholar
  14. Garey, M.R., Johnson, D.S.: Computers and Intractability: A Guide to the Theory of NP-Completeness. Freeman, San Francisco (1979) MATHGoogle Scholar
  15. Goldberg, D.: Genetic Algorithms in Search, Optimization and Machine Learning. Addison–Wesley, Massachusetts (1989) MATHGoogle Scholar
  16. Moz, M.: Técnicas de investigação operacional aplicadas a um problema de escalonamento de pessoal em contexto hospitalar. PhD Dissertation, Instituto Superior de Economia e Gestão, Universidade Técnica de Lisboa (2003) Google Scholar
  17. Moz, M., Pato, M.V.: An integer multicommodity flow model applied to the rerostering of nurse schedules. Ann. Oper. Res. 119(1–4), 285–301 (2003) MATHCrossRefGoogle Scholar
  18. Moz, M., Pato, M.V.: Solving the problem of rerostering nurse schedules with hard constraints: new multicommodity flow models. Ann. Oper. Res. 128(1–4), 179–197 (2004) MATHCrossRefGoogle Scholar
  19. Moz, M., Pato, M.V.: A bi-objective network flow approach for nurse rerostering. In: Gouveia, L., Mourão, C. (eds.), Proceedings of the INOC 2005—International Network Optimization Conference, Lisbon, March 2005, B3.817 Google Scholar
  20. Moz, M., Pato, M.V.: A genetic algorithm approach to a nurse rerostering problem. Comput. Oper. Res. 34, 667–691 (2007) MATHCrossRefGoogle Scholar
  21. Petrovic, S., Beddoe, G., Vanden Berghe, G.: Storing and adapting repair experiences in personnel rostering. In: Burke, E., De Causmaecker, P. (eds.) Practice and Theory of Automated Timetabling IV: Fourth International Conference PATAT 2002, selected revised papers. Lecture Notes in Computer Science, vol. 2740, pp. 148–165. Springer, Berlin (2002) Google Scholar
  22. Schaffer, J.D.: Multiple objective optimization with vector evaluated genetic algorithms. In: Grefenstette, J.J. (ed.) Genetic Algorithms and their Applications, Proceedings of the Third International Conference on Genetic Algorithms, pp. 93–100. Lawrence Erlbaum, Hillsdale (1985) Google Scholar
  23. Silva, J.D.L., Burke, E.K., Petrovic, S.: An introduction to multiobjective metaheuristics for scheduling and timetabling. In: Gandibleux, X., Sevaux, M., Sörensen, K., T’kindt, V. (eds.) Metaheuristics for Multiobjective Optimisation. Springer, Berlin (2004) Google Scholar
  24. Tien, J.M., Kamiyama, A.: On manpower scheduling algorithms. SIAM Rev. 24(3), 275–287 (1982) MATHCrossRefMathSciNetGoogle Scholar
  25. Zitzler, E., Laumanns, M., Bleuler, S.: A tutorial on multiobjective optimization. In: Gandibleux, X., Sevaux, M., Sörensen, K., T’kindt, V. (eds.) Metaheuristics for Multiobjective Optimisation. Springer, Berlin (2004) Google Scholar
  26. Zitzler, E., Laumanns, M., Thiele, L.: SPEA2: improving the strength Pareto evolutionary algorithm. TIK-Report 103, Computer Engineering and Networks Laboratory, Swiss Federal Institute of Technology, Zurich (2001) Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2007

Authors and Affiliations

  1. 1.Instituto Superior de Economia e Gestão, Departamento de MatemáticaUniversidade Técnica de LisboaLisbonPortugal
  2. 2.Centro de Investigação OperacionalUniversidade de LisboaLisbonPortugal

Personalised recommendations