Journal of Heuristics

, Volume 13, Issue 5, pp 455–469 | Cite as

Target aiming Pareto search and its application to the vehicle routing problem with route balancing

  • Nicolas Jozefowiez
  • Frédéric Semet
  • El-Ghazali Talbi
Article

Abstract

In this paper, we present a solution method for a bi-objective vehicle routing problem, called the vehicle routing problem with route balancing (VRPRB), in which the total length and balance of the route lengths are the objectives under consideration. The method, called Target Aiming Pareto Search, is defined to hybridize a multi-objective genetic algorithm for the VRPRB using local searches. The method is based on repeated local searches with their own appropriate goals. We also propose an implementation of the Target Aiming Pareto Search using tabu searches, which are efficient meta-heuristics for the vehicle routing problem. Assessments with standard metrics on classical benchmarks demonstrate the importance of hybridization as well as the efficiency of the Target Aiming Pareto Search.

Keywords

Routing Multi-objective optimization Tabu search Hybrid algorithm 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Ben Abdelaziz, F., Kricen, S., Chaouchi, J.: A hybrid heuristic for multiobjective knapsack problem. In: Metaheuristics: Advances and Trends in Local Search Paradigms for Optimization, pp. 205–212. Kluwer Academic, Dordrecht (1999) Google Scholar
  2. Christofides, N., Mingozzi, A., Toth, P., Sandi, C. (eds.): Combinatorial Optimization, pp. 315–338, Chapter 11. Wiley, Chichester (1979) Google Scholar
  3. Corberan, A., Fernandez, E., Laguna, M., Marti, R.: Heuristic solutions to the problem of routing school buses with multiple objectives. J. Oper. Res. Soc. 53(4), 427–435 (2002) MATHCrossRefGoogle Scholar
  4. Cordeau, J.-F., Gendreau, M., Laporte, G.: A tabu search heuristic for periodic and multi-depot vehicle problems. Networks 30, 105–119 (1997) MATHCrossRefGoogle Scholar
  5. Cordeau, J.-F., Laporte, G., Mercier, A.: A unified tabu search heuristic for vehicle routing problem with time windows. J. Oper. Res. Soc. 52, 928–932 (2001) MATHCrossRefGoogle Scholar
  6. Current, J., Marsh, M.: Multiobjective transportation network design and routing problems: taxonomy and annotation. Eur. J. Oper. Res. 65, 4–19 (1993) MATHCrossRefGoogle Scholar
  7. Deb, K., Agrawal, S., Pratab, A., Meyunivan, T.: A fast elitist non-dominated sorting genetic algorithm for multi-objective optimization: Nsga-ii. IEEE Trans. Evol. Comput. 6(2), 182–197 (April 2002) CrossRefGoogle Scholar
  8. Deb, K., Goel, T.: A hybrid multi-objective evolutionary approach to engineering shape design. In: Zitzler, E., et al. (eds.) Evolutionary Multi-Criterion Optimization. Lecture Notes in Computer Science, vol. 1993, pp. 385–399. Springer, New York (2001) Google Scholar
  9. Ehrgott, M., Gandibleux, X.: A survey and annotated bibliography of multi-objective combinatorial optimization. OR Spektrum 22, 425–460 (2000) MATHMathSciNetGoogle Scholar
  10. El-Sherbeny, N.: Resolution of a vehicle routing problem with multi-objective simulated annealing method. Ph.D. thesis, Faculté Polytechnique de Mons (2001) Google Scholar
  11. Geiger, M.J.: Genetic algorithms for multiple objective routing. In: MIC’2001, pp. 349–353 (2001) Google Scholar
  12. Gendreau, M., Hertz, A., Laporte, G.: A tabu search heuristic for the vehicle routing problem. Manag. Sci. 40, 1276–1290 (1994) MATHGoogle Scholar
  13. Hansen, M.P.: Tabu search for multiobjective optimization: MOTS. In: Multiple Criteria Decision Making (1997) Google Scholar
  14. Hong, S.-C., Park, Y.-B.: A heuristic for a bi-objective vehicle routing with time window constraints. Int. J. Prod. Econ. 62, 249–258 (1999) CrossRefGoogle Scholar
  15. Ishibuchi, H., Yoshida, T., Murata, T.: Balance between genetic search and local search in hybrid evolutionary multi-criterion optimization algorithms. In: Cantu-Paz, E., et al. (eds.) Genetic and Evolutionary Computation Conference, pp. 1301–1308. Morgan Kaufmann (July 2002) Google Scholar
  16. Jaszkiewicz, A.: Genetic local search for multi-objective combinatorial optimization. Eur. J. Oper. Res. 137, 50–71 (2002) MATHCrossRefMathSciNetGoogle Scholar
  17. Jozefowiez, N., Semet, F., Talbi, E.-G.: Parallel and hybrid models for multi-objective optimization: application to the vehicle routing problem. In: Merelo Guervos, J.J., et al. (eds.) PPSN VII. Lecture Notes in Computer Science, vol. 2439, pp. 271–280. Springer, New York (September 2002) Google Scholar
  18. Knowles, J., Corne, D.: On metrics for comparing nondominated sets. In: Congress on Evolutionary Computation (CEC’2002), vol. 1, pp. 711–726. IEEE Center (2002) Google Scholar
  19. Knowles, J.D.: Local-search and hybrid evolutionary algorithms for Pareto optimization. Ph.D. thesis, University of Reading, Reading, UK (January 2002) Google Scholar
  20. Lee, T., Ueng, J.: A study of vehicle routing problems with load-balancing. Int. J. Phys. Distrib. Logist. Manag. 29(10), 646–658 (1999) CrossRefGoogle Scholar
  21. Lenstra, J.K., Rinnooy Kan, A.H.G.: Complexity of vehicle routing and scheduling problem. Networks 11, 221–227 (1981) CrossRefGoogle Scholar
  22. Lin, S.: Computer solutions of the traveling salesman problem. Bell Syst. Tech. J. 44, 2245–2269 (1965) MATHGoogle Scholar
  23. Morse, J.N.: Reducing the size of non-dominated set: pruning by clustering. Comput. Oper. Res. 7(1–2), 55–66 (1980) CrossRefGoogle Scholar
  24. Or, I.: Traveling salesman-type combinatorial problems and their relation to the logistics of blood banking. Ph.D. thesis, Department of Industrial Engineering and Management Science, Northwestern University, Evanston, IL (1976) Google Scholar
  25. Potvin, J.-Y., Bengio, S.: The vehicle routing problem with time windows part II: genetic search. INFORMS J. Comput. 8(2), 165–172 (1996) MATHCrossRefGoogle Scholar
  26. Prins, C.: A simple and effective evolutionary algorithm for the vehicle routing problem. Comput. Oper. Res. 33(12), 1985–2002 (2006) MathSciNetGoogle Scholar
  27. Rahoual, M., Kitoun, B., Mabed, M., Bachelet, V., Benameur, F.: Multicriteria genetic algorithms for the vehicle routing problem with time windows. In: MIC’2001, pp. 527–532 (2001) Google Scholar
  28. Ribeiro, R., Loureno, H.R.: A multi-objective model for a multi-period distribution management problem. In: MIC’2001—4th Metaheuristics International Conference, pp. 97–102 (July 2001) Google Scholar
  29. Rochat, Y., Taillard, E.: Probalistic diversification and intensification in local search for vehicle routing. J. Heuristics 1, 147–167 (1995) MATHCrossRefGoogle Scholar
  30. Serafini, P.: Simulated annealing for multiple objective optimization problems. In: The Tenth International Conference on Multiple Criteria Decision Making, vol. 1, pp. 87–96 (1992) Google Scholar
  31. Silverman, B.W.: Density Estimation for Statistics and Data Analysis. Chapman and Hall, London (1986) MATHGoogle Scholar
  32. Sessomboon, W., Watanabe, K., Irohara, T., Yoshimoto, K.: A study on multi-objective vehicle routing problem considering customer satisfaction with due-time (the creation of Pareto optimal solutions by hybrid genetic algorithm). Trans. Jpn. Soc. Mech. Eng. 64, 1108–1115 (1998) Google Scholar
  33. Toth, P., Vigo, D. (eds.): The Vehicle Routing Problem. SIAM Monographs on Discrete Mathematics and Applications, vol. 9. SIAM (December 2001) Google Scholar
  34. Ulungu, E.L.: Optimisation combinatoire multicritère: détermination de l’ensemble des solutions efficaces et méthodes interactives. Ph.D. thesis. Université de Mons-Hainaut (1993) Google Scholar
  35. Zitzler, E.: Evolutionary algorithm for multiobjective optimization: methods and applications. Ph.D. thesis. Swiss Federal Institute of Technology (ETH), Zurich, Switzerland (November 1999) Google Scholar
  36. Zitzler, E., Laumanns, M., Thiele, L.: SPEA2: improving the strength pareto evolutionary algorithm. Technical Report 103, Computer Engineering and Networks Laboratory (TIK), Swiss Federal Institute of Technology (ETH), Zurich, Switzerland (2001) Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2007

Authors and Affiliations

  • Nicolas Jozefowiez
    • 1
  • Frédéric Semet
    • 2
  • El-Ghazali Talbi
    • 1
  1. 1.Laboratoire d’Informatique Fondamentale de LilleUniversité des Sciences et Technologies de LilleVilleneuve d’AscqFrance
  2. 2.Laboratoire d’Automatique, de Mécanique et d’Informatique industrielles et HumainesUniversité de Valenciennes et du Hainaut-CambrésisValenciennesFrance

Personalised recommendations