Journal of Heuristics

, Volume 12, Issue 4–5, pp 329–346 | Cite as

Integration and propagation of a multi-criteria decision making model in constraint programming

  • F. Le HuédéEmail author
  • M. Grabisch
  • C. Labreuche
  • P. Savéant


In this paper we propose a general integration scheme for a Multi-Criteria Decision Making model of the Multi-Attribute Utility Theory in Constraint Programming. We introduce the Choquet integral as a general aggregation function for multi-criteria optimization problems and define the Choquet global constraint that propagates this function during the Branch-and-Bound search. Finally the benefits of the propagation of the Choquet constraint are evaluated on the examination timetabling problem.


Multi-criteria optimization Constraint programming Multi-criteria decision making 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Apt, K.R. (1998). “A Proof Theoretic View of Constraint Programming.” Fundamenta Informaticae 34(3), 295–321.zbMATHMathSciNetGoogle Scholar
  2. Apt, K.R. (1999). “The Essence of Constraint Propagation.” Theoretical Computer Science 221(1–2), 179–210.CrossRefzbMATHMathSciNetGoogle Scholar
  3. Bana e Costa, C.A. and J.C. Vansnick. (1994). “A Theoretical Framework for Measuring Attractiveness by a Categorical Based Evaluation TecHnique (MACBETH).” In Proc. XIth Int. Conf. on MCDM, Coimbra, Portugal, pp. 15–24.Google Scholar
  4. Barichard, V. and J.-K. Hao. (2003). “A Population and Interval Constraint Propagation Algorithm.” In LNCS 2632, Springer, pp. 88–101.Google Scholar
  5. Bistarelli, S., U. Montanari, F. Rossi, T. Schiex, G. Verfaillie, and H. Fargier. (1999). “Semiring-based CSPs and valued CSPs: Frameworks, properties, and comparison.” CONSTRAINTS 4, 199–240.CrossRefMathSciNetzbMATHGoogle Scholar
  6. Boutilier, C., R. Brafman, C. Domshlak, H.H. Hoos, and D. Poole. (2004). “CP-nets: A Tool for Representing and Reasoning with Conditional Ceteris Paribus Preference Statements.” Journal of Artificial Intelligence Research 21, 135–191.MathSciNetzbMATHGoogle Scholar
  7. Boutilier, C., R. Brafman, C. Domshlak, H.H. Hoos, and D. Poole. (2004). “Preference-Based Constrained Optimization with CP-nets.” Computational Intelligence 20(2), 137–157.CrossRefMathSciNetGoogle Scholar
  8. Choquet, G. (1953). “Theory of Capacities.” Annales de l'Institut Fourier 5, 131–295.MathSciNetGoogle Scholar
  9. Gavanelli, M. (2002). “An Algorithm for Multi-Criteria Optimization in CSPs.” In Frank van Harmelen, editor, Proceedings of ECAI-2002, Lyon, France, IOS Press, pp. 136–140.Google Scholar
  10. Grabisch, M. (1996). “The Application of Fuzzy Integrals in Multicriteria Decision Making.” European J. of Operational Research 89, 445–456.CrossRefzbMATHGoogle Scholar
  11. Grabisch, M. (2000). “The Interaction and Möbius Representations of Fuzzy Measures on Finite Spaces, k-Additive Measures: A Survey.” In M. Grabisch, T. Murofushi, and M. Sugeno, editors, Fuzzy Measures and Integrals–-Theory and Applications, Physica Verlag, pp. 70–93.Google Scholar
  12. Grabisch, M. and M. Roubens. (2000). “Application of the Choquet Integral in Multicriteria Decision Making.” In M. Grabisch, T. Murofushi, and M. Sugeno, editors, Fuzzy Measures and Integrals–-Theory and Applications, Physica Verlag, pp. 348–374.Google Scholar
  13. Ben Jaâfar, I., N. Khayati, and K. Ghédira. (2004). “Multicriteria Optimization in CSPs: Foundations and Distributed Solving Approach.” In Christoph Bussler and Dieter Fensel, editors, AIMSA, volume 3192 of LNCS, Springer, pp. 459–468.Google Scholar
  14. Junker, U. (2004). “Preference-Based Search and Multi-Criteria Optimization.” Annals of OR 130, 75–115.zbMATHMathSciNetCrossRefGoogle Scholar
  15. Kaymak, U. and J.M. Sousa. (2003). “Weighted Constraint Aggregation in Fuzzy Optimization.” Constraints 8(1), 61–78, Jan.CrossRefMathSciNetzbMATHGoogle Scholar
  16. Keeney, R.L. and H. Raiffa. (1976). Decision with Multiple Objectives. Wiley, New York.Google Scholar
  17. Labreuche, C. and M. Grabisch. (2003). “The Choquet Integral for the aggregation of Interval Scales in Multicriteria Decision making.” Fuzzy Sets and Systems 137(1), 11–26.CrossRefMathSciNetzbMATHGoogle Scholar
  18. Labreuche, C. and F. Le Huédé. (2005). “MYRIAD: a Tool Suite for MCDA.” In EUSFLAT'05, Barcelona, Spain.Google Scholar
  19. Le Huédé, F. (2003). Intégration d'un modèle dÁide à la Décision Multicritère en Programmation Par Contraintes. PhD thesis, Universitée Paris 6.Google Scholar
  20. Le Huédé, F., M. Grabisch, C. Labreuche, and P. Savéant. (2003). “Multicriteria Search in Constraint Programming.” In Proceedings of CP-AI-OR'03, Montréal, Canada, pp. 291–304.Google Scholar
  21. Lhomme, O. (1993). “Consistency Techniques for Numerical CSPs.” In Proceedings of IJCAI 1993, Chambery, France, pp. 232–238.Google Scholar
  22. Marichal, J.L. (1998). Aggregation Operators for Multicriteria Decision Aid. PhD thesis, University of Liège.Google Scholar
  23. Michel, C., M. Rueher, and Y. Lebbah. (2001). “Solving Constraints Over Floationg-Point Numbers.” In Proceedings of CP-2001, Springer.Google Scholar
  24. Museux, N., L. Jeannin, P. Savéant, F. Le Huédé, F.-X. Josset, and J. Mattioli. (2003). “Claire/Eclair: Un environnement de modélisation et de résolution pour des applications d'optimisation combinatoires embarquées.” In Proceedings of JFPLC'03, Amiens, France.Google Scholar
  25. Prestwich, S., F. Rossi, K.B. Venable, and T. Walsh. (2005). “Constraint-Based Preferential Optimization.” In AAAI, pp. 461–466.Google Scholar
  26. Pearl Pu and Boi Faltings. (2004). “Decision Tradeoff using Example-Critiquing and Constraint Programming.” Constraints 9(4), 289–310.CrossRefMathSciNetGoogle Scholar
  27. Refalo, P. (1999). “Tight Cooperation and its Application in Piecewise Linear Optimisation.” In Proceedings of CP-99, Springer, pp. 375–389.Google Scholar
  28. Sugeno, M. (1974). Theory of fuzzy integrals and its applications, PhD thesis, Tokyo Institute of Technology.Google Scholar
  29. Zhang, Y. and R. H.C. Yap. (2000). “Arc Consistency on n-ary Monotonic and Linear Constraints.” In Proceedings of CP-2000, Singapore, pp. 470–483.Google Scholar

Copyright information

© Springer Science + Business Media, LLC 2006

Authors and Affiliations

  • F. Le Huédé
    • 1
    Email author
  • M. Grabisch
    • 2
    • 3
  • C. Labreuche
    • 1
  • P. Savéant
    • 1
  1. 1.THALES Research and Technology FranceOrsay cedex
  2. 2.Université Paris I Pantheon-SorbonneParis
  3. 3.LIP 6, Université Pierre et Marie Curie (UPMC)Paris

Personalised recommendations