Health Care Management Science

, Volume 14, Issue 2, pp 174–188 | Cite as

Inferring model parameters in network-based disease simulation

Article

Abstract

Many models of infectious disease ignore the underlying contact structure through which the disease spreads. However, in order to evaluate the efficacy of certain disease control interventions, it may be important to include this network structure. We present a network modeling framework of the spread of disease and a methodology for inferring important model parameters, such as those governing network structure and network dynamics, from readily available data sources. This is a general and flexible framework with wide applicability to modeling the spread of disease through sexual or close contact networks. To illustrate, we apply this modeling framework to evaluate HIV control programs in sub-Saharan Africa, including programs aimed at concurrent partnership reduction, reductions in risky sexual behavior, and scale up of HIV treatment.

Keywords

Stochastic simulation Network dynamics Concurrent partnerships Sexually transmitted diseases 

Notes

Acknowledgement

This research was funded by the National Institute on Drug Abuse, Grant Number R01-DA15612. Eva Enns is supported by a National Defense Science and Engineering Graduate Fellowship, a National Science Foundation Graduate Fellowship, and a Rambus Inc. Stanford Graduate Fellowship.

References

  1. 1.
    Amaral LAN, Scala A, Barthlmy M, Stanley HE (2000) Classes of small-world networks. PNAS 97(21):11,149–11,152CrossRefGoogle Scholar
  2. 2.
    Anderson RM, May RM (1991) Infectious diseases of humans: dynamics and control. Oxford University Press, OxfordGoogle Scholar
  3. 3.
    Badri M, Lawn S, Wood R (2006) Short-term risk of AIDS or death in people infected with HIV-1 before antiretroviral therapy in South Africa: a longitudinal study. Lancet 368(9543):1254–1259CrossRefGoogle Scholar
  4. 4.
    Banks J, Carson JS, Nelson BL, Nicol DM (2009) Discrete-event simulation, 5th edn. Prentice HallGoogle Scholar
  5. 5.
    Bendavid E, Young SD, Katzenstein DA, Bayoumi AM, Sanders GD, Owens DK (2008) Cost-effectiveness of HIV monitoring strategies in resource-limited settings: a southern African analysis. Arch Intern Med 168(17):1910–1918CrossRefGoogle Scholar
  6. 6.
    Carter MW, Kraft JM, Koppenhaver T, Galavotti C, Roels TH, Kilmarx PH, Fidzani B (2007) A bull cannot be contained in a single kraal: concurrent sexual partnerships in Botswana. AIDS Behav 11(6):822–830CrossRefGoogle Scholar
  7. 7.
    Drummond M, McGuire A (2001) Economic evaluation in health care: merging theory with practice. Oxford University PressGoogle Scholar
  8. 8.
    Enns EA, Brandeau ML, Igeme TK, Bendavid E (2011) Assessing effectiveness and cost-effectiveness of concurrency reduction for HIV prevention. Working Paper, Stanford UniversityGoogle Scholar
  9. 9.
    Fenton K, Johnson A, McManus S, Erens B (2001) Measuring sexual behaviour: methodological challenges in survey research. Sex Transm Infect 77(2):84–92CrossRefGoogle Scholar
  10. 10.
    Ghani AC, Swinton J, Garnett G (1997) The role of sexual partnership networks in the epidemiology of gonorrhea. Sex Transm Dis 24(1):45–56CrossRefGoogle Scholar
  11. 11.
    Goldie S, Yazdanpanah Y, Losina E, Weinstein MC, Anglaret XRW, Hsu H, Kimmel A, Holmes C, Kaplan J, Freedberg K (2006) Cost-effectiveness of HIV treatment in resource-poor settings–the case of Cote d’Ivoire. N Engl J Med 355(11):1141–1153CrossRefGoogle Scholar
  12. 12.
    Grant M, Boyd S (2010) CVX: Matlab software for disciplined convex programming, version 1.21. cvxr.com/cvx
  13. 13.
    Gray RH, Wawer MJ, Brookmeyer R, Sewankambo NK, Serwadda D, Wabwire-Mangen F, Lutalo T, Li X, vanCott T, Quinn TC (2001) Probability of HIV-1 transmission per coital act in monogamous, heterosexual, HIV-1-discordant couples in Rakai, Uganda. Lancet 357(9263):1149–1153CrossRefGoogle Scholar
  14. 14.
    Green EC, Halperin DT, Nantulya V, Hogle JA (2006) Uganda’s HIV prevention success: the role of sexual behavior change and the national response. AIDS Behav 10(4):335–346CrossRefGoogle Scholar
  15. 15.
    Helleringer S, Kohler H (2007) Sexual network structure and the spread of HIV in Africa: evidence from Likoma Island, Malawi. AIDS 21(17):2323–2332CrossRefGoogle Scholar
  16. 16.
    Jackson M (2008) Social and economic networks. Princeton University PressGoogle Scholar
  17. 17.
    Kiss IZ, Green DM, Kao RR(2006) Infectious disease control using contact tracing in random and scale-free networks. J R Soc Interface 3(6):55–62CrossRefGoogle Scholar
  18. 18.
    Klovdahl AS (1985) Social networks and the spread of infectious diseases: the AIDS example. Soc Sci Med 21(11):1203–1216CrossRefGoogle Scholar
  19. 19.
    Klusmann D (2002) Sexual motivation and the duration of partnership. Arch Sex Behav 31(3):275–287CrossRefGoogle Scholar
  20. 20.
    Kretzschmar M, van Duynhoven YTHP, Severijnen AJ (1996) Modeling prevention strategies for gonorrhea and chlamydia using stochastic network simulations. Am J Epidemiol 144(3):306–317Google Scholar
  21. 21.
    Liljeros F, Edling CR, Amaral LAN, Stanley HE, Åberg Y (2001) The web of human sexual contacts. Nature 411:907–908CrossRefGoogle Scholar
  22. 22.
    Mah T, Halperin D (2008) Concurrent sexual partnerships and the HIV epidemics in Africa: evidence to move forward. AIDS Behav 14(1):11–16CrossRefGoogle Scholar
  23. 23.
    MEASURE DHS. Demographic and health surveys. www.measuredhs.com. Accessed January 2009
  24. 24.
    MEASURE DHS (2003) Tanzania demographic and health survey. www.measuredhs.com
  25. 25.
    Morris M, Kretzschmar M (2000) A microsimulation study of the effect of concurrent partnerships on the spread of HIV in Uganda. Math Popul Stud 8(2):109–133CrossRefGoogle Scholar
  26. 26.
    National AIDS Coordinating Agency Botswana (2009) National campaign plan—multiple concurrent partnerships. www.comminit.com/en/node/304747/2781
  27. 27.
    Newman MEJ, Strogatz SH, Watts DJ (2001) Random graphs with arbitrary degree distributions and their applications. Phys Rev E 64(2):026,118Google Scholar
  28. 28.
    Parker M, Ward H, Day S (1998) Sexual networks and the transmission of HIV in London. J Biosoc Sci 30(1): 63–83CrossRefGoogle Scholar
  29. 29.
    Serlemitsos E (2009) Mass media campaign on multiple concurrent sexual partnerships (MCP) in Zambia. www.harvardaidsprp.org
  30. 30.
    Strogatz SH (2001) Exploring complex networks. Nature 410(6825):268–276CrossRefGoogle Scholar
  31. 31.
    The United Republic of Tanzania Prime Minister’s Office (2009) National policy on HIV/AIDS. www.tanzania.go.tz/pdf/hivaidspolicy.pdf
  32. 32.
    Troitzsch KG (2004) Validating simulation models. In: Proceedings of the 18th European simulation multiconference. Society for Modeling and Simulation, GermanyGoogle Scholar
  33. 33.
    Tumbo D, Jana M, Nkambule M (2008) One love: Multiple and concurrent sexual partnerships in southern Africa. www.onelovesouthernafrica.org
  34. 34.
    UNAIDS (2008) Report on the global AIDS epidemic. www.unaids.org/en/KnowledgeCentre/HIVData/GlobalReport/2008
  35. 35.
    US Census Bureau, P.D. (2008) International data base. www.census.gov/ipc/www/idb/tables.html
  36. 36.
    Vieira IT, Cheng RCH, Harper PR, Senna V (2010) Small world network models of the dynamics of HIV infection. Ann Oper Res 178(1):173–200CrossRefGoogle Scholar
  37. 37.
    Wadsworth J, Johnson A, Wellings K, Field J (1996) What’s in a mean?—an examination of the inconsistency between men and women in reporting sexual partnerships. J R Stat Soc A 159(1):111–123CrossRefGoogle Scholar
  38. 38.
    Watts DJ, Strogatz SH (1998) Collective dynamics of ‘small-world’ networks. Nature 393(6684):440–442CrossRefGoogle Scholar
  39. 39.
    Wawer MJ, Gray RH, Sewankambo NK, Serwadda D, Li X, Laeyendecker O, Kiwanuka N, Kigozi G, Kiddugavu M, Lutalo T, Nalugoda F, Wabwire-Mangen F, Meehan MP, Quinn TC (2005) Rates of HIV-1 transmission per coital act, by stage of HIV-1 infection, in Rakai, Uganda. J Infect Dis 191(9):1403–1409CrossRefGoogle Scholar
  40. 40.
    Weeks MR, Clair S, Borgatti SP, Radda K, Schensul JJ (2002) Social networks of drug users in high-risk sites: finding the connections. AIDS Behav 6(2):193–206CrossRefGoogle Scholar
  41. 41.
    WHO (1999) Removing obstacles to healthy development. www.who.int/infectious-disease-report/
  42. 42.
    WHO (2006) Life tables for WHO member states. www.who.int/whosis/database/life_tables/life_tables.cfm
  43. 43.
    WHO (2008) Millennium development goals: Combat HIV/AIDS, malaria and other diseases. www.who.int/topics/millennium_development_goals/
  44. 44.
    Wylie JL, Jolly A (2001) Patterns of chlamydia and gonorrhea infection in sexual networks in Manitoba, Canada. Sex Transm Dis 28(1):14–24CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  1. 1.Department of Electrical EngineeringStanford UniversityStanfordUSA
  2. 2.Department of Management Science & EngineeringStanford University, Huang Engineering CenterStanfordUSA

Personalised recommendations