Health Care Management Science

, 12:228 | Cite as

Accommodating individual preferences in nurse scheduling via auctions and optimization

  • Melanie L. De Grano
  • D. J. Medeiros
  • David Eitel


This paper describes a two-stage approach to nurse scheduling that considers both nurse preferences and hospital constraints. In the auction stage, nurses bid for their preferred working shifts and rest days using “points”. An optimization model awards shifts to the highest bidders insofar as possible while maintaining hospital requirements. In the schedule completion stage, an optimization model allocates the unfilled shifts to nurses who have not yet met their minimum required hours. The approach is demonstrated via a case study in the emergency department at York Hospital. A schedule with a high percentage of awarded bids was generated in a few minutes of computer time. Further experimentation suggests that the approach works well under a variety of conditions.


Nurse scheduling Health care applications Optimization Auction 


  1. 1.
    Bureau of Health Professions (2004). What is Behind HRSA’s Projected Supply, Demand, and Shortage of Registered Nurses. Available at Accessed June 2008
  2. 2.
    Sagie A, Krausz M (2003) What aspects of the job have most effect on nurses? Hum Resour Manag J 13:46–62 doi: 10.1111/j.1748-8583.2003.tb00083.x CrossRefGoogle Scholar
  3. 3.
    Kellogg D, Walczak S (2007) Nurse scheduling: from academia to implementation or not? Interfaces 37(4):355–369 doi: 10.1287/inte.1070.0291 CrossRefGoogle Scholar
  4. 4.
    Koeppel D (2004) Nurses bid with their pay in auctions for extra work. The New York Times, June 6Google Scholar
  5. 5.
    Miller A (2004) Nursing shifts up for bid: Riverdale hospital to use web to match RNs and extra work. The Atlanta Journal—Constitution, August 13, E1Google Scholar
  6. 6.
    Sidime A (2005) Bidding for work. Knight Ridder Tribune Business News, February 28Google Scholar
  7. 7.
    Cheang H, Lim A, Rodrigues B (2003) Nurse rostering problems—a bibliographic survey. Eur J Oper Res 151:447–460 doi: 10.1016/S0377-2217(03)00021-3 CrossRefGoogle Scholar
  8. 8.
    Burke E, De Causmaecker P, Berghe G, Van Landeghem H (2004) The state of the art of nurse rostering. J Sched 7:441–499 doi: 10.1023/B:JOSH.0000046076.75950.0b CrossRefGoogle Scholar
  9. 9.
    Burns R (1978) Manpower scheduling with variable demands and alternate weekends off. Infor 16(2):101–111Google Scholar
  10. 10.
    Bard J, Purnomo H (2005) Preference scheduling for nurses using column generation. Eur J Oper Res 164:510–534 doi: 10.1016/j.ejor.2003.06.046 CrossRefGoogle Scholar
  11. 11.
    Jaumard B, Semet F, Vover T (1998) A generalized linear programming model for nurse scheduling. Eur J Oper Res 107:1–18 doi: 10.1016/S0377-2217(97)00330-5 CrossRefGoogle Scholar
  12. 12.
    Abernathy W, Baloff N, Hershey J, Wandel S (1973) A three-stage manpower planning and scheduling model—a service-sector example. Oper Res 21(3):693–711CrossRefGoogle Scholar
  13. 13.
    Warner D (1976) Scheduling nursing personnel according to nursing preference: a mathematical programming approach. Oper Res 24(5):842–856CrossRefGoogle Scholar
  14. 14.
    Arthur J, Ravindran A (1981) A multiple objective nurse scheduling model. IIE Trans 13:55–60 doi: 10.1080/05695558108974536 CrossRefGoogle Scholar
  15. 15.
    Ozkarahan I, Bailey J (1988) Goal programming model subsystem of a flexible nurse scheduling support subsystem. IIE Trans 20(3):306–316 doi: 10.1080/07408178808966185 CrossRefGoogle Scholar
  16. 16.
    Ozkarahan I (1989) A flexible nurse scheduling support system. Comput Methods Programs Biomed 30(2–3):145–153 doi: 10.1016/0169-2607(89)90066-7 CrossRefGoogle Scholar
  17. 17.
    Warner D, Prawda J (1972) A mathematical programming model for scheduling personnel in a hospital. Manage Sci 19(4):411–422CrossRefGoogle Scholar
  18. 18.
    Ferland J, Berrada I, Nabli I, Ahoid B, Michelon P, Gascon V, Gagne E (2001) Generalized assignment type goal programming problem: application to nurse scheduling. J Heuristics 7:391–413 doi: 10.1023/A:1011392328632 CrossRefGoogle Scholar
  19. 19.
    Dowsland K, Thompson J (2000) Solving a nurse scheduling problem with knapsacks, networks and tabu search. J Oper Res Soc 51:825–833CrossRefGoogle Scholar
  20. 20.
    Azaiez M, Al Sharif S (2005) A 0–1 goal programming model for nurse scheduling. Comput Oper Res 32:491–507 doi: 10.1016/S0305-0548(03)00249-1 CrossRefGoogle Scholar
  21. 21.
    Berrada I, Ferland J, Michelon P (1996) A multi-objective approach to nurse scheduling with both hard and soft constraints. Socio-econ Plann Sci 30:183–193 doi: 10.1016/0038-0121(96)00010-9 CrossRefGoogle Scholar
  22. 22.
    Miller H, Rath G, Pierskalla W (1976) Nurse scheduling using mathematical programming. Oper Res 24:857–870CrossRefGoogle Scholar
  23. 23.
    Griesmer H (1993) Self-scheduling turned us into a winning team. RN 56(12):21–23Google Scholar
  24. 24.
    Miller M (1984) Implementing self-scheduling. J Nurs Adm 14:33–36 doi: 10.1097/00005110-198403000-00011 Google Scholar
  25. 25.
    Ringl K, Dotson L (1989) Self-scheduling for professional nurses. Nurs Manage 20:42–44 doi: 10.1097/00006247-198902000-00013 Google Scholar
  26. 26.
    Silvestro R, Silvestro C (2000) An evaluation of nurse rostering practices in the National Health Service. J Adv Nurs 32:525–535 doi: 10.1046/j.1365-2648.2000.01512.x CrossRefGoogle Scholar
  27. 27.
    Lawrence S (2004) System lets nurses bid for shifts. Available at,1895,1666200,00.asp. Accessed on September 2006
  28. 28.
    Klemperer P (1999) Auction theory: a guide to the literature. J Econ Surv 13:227–286 doi: 10.1111/1467-6419.00083 CrossRefGoogle Scholar
  29. 29.
    Warner M, Keller B, Martel S (1991) Automated nurse scheduling. J Soc Health Syst 2(2):66–80Google Scholar
  30. 30.
    The Free Online Medical Dictionary. Available at
  31. 31.
    Sönmez T, Ünver U (2003) Course Bidding at Business Schools. Available at Accessed on February 2007

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  • Melanie L. De Grano
    • 1
  • D. J. Medeiros
    • 2
  • David Eitel
    • 3
  1. 1.Operations AnalyticsIBM Global Business ServicesFairfaxUSA
  2. 2.Department of Industrial and Manufacturing EngineeringThe Pennsylvania State UniversityUniversity ParkUSA
  3. 3.Department of Quality ManagementWellspan Health SystemYorkUSA

Personalised recommendations