Optimal investment in HIV prevention programs: more is not always better

Article

Abstract

This paper develops a mathematical/economic framework to address the following question: Given a particular population, a specific HIV prevention program, and a fixed amount of funds that could be invested in the program, how much money should be invested? We consider the impact of investment in a prevention program on the HIV sufficient contact rate (defined via production functions that describe the change in the sufficient contact rate as a function of expenditure on a prevention program), and the impact of changes in the sufficient contact rate on the spread of HIV (via an epidemic model). In general, the cost per HIV infection averted is not constant as the level of investment changes, so the fact that some investment in a program is cost effective does not mean that more investment in the program is cost effective. Our framework provides a formal means for determining how the cost per infection averted changes with the level of expenditure. We can use this information as follows: When the program has decreasing marginal cost per infection averted (which occurs, for example, with a growing epidemic and a prevention program with increasing returns to scale), it is optimal either to spend nothing on the program or to spend the entire budget. When the program has increasing marginal cost per infection averted (which occurs, for example, with a shrinking epidemic and a prevention program with decreasing returns to scale), it may be optimal to spend some but not all of the budget. The amount that should be spent depends on both the rate of disease spread and the production function for the prevention program. We illustrate our ideas with two examples: that of a needle exchange program, and that of a methadone maintenance program.

Keywords

HIV/AIDS Resource allocation HIV prevention Cost–effectiveness analysis 

Notes

Acknowledgment

This work was supported by a grant from the National Institute on Drug Abuse (NIDA), National Institutes of Health (NIH; grant DA-R01-15612).

References

  1. 1.
    World Health Organization (2007) Global HIV prevalence has levelled off. http://www.who.int/mediacentre/news/releases/2007/pr61/en/index.html. Accessed March 7, 2008
  2. 2.
    Joint United Nations Programme on HIV/AIDS (UNAIDS) (2005) Resource needs for an expanded response to AIDS in low- and middle-income countries. http://www.unaids.org/html/pub/publications/irc-pub06/resourceneedsreport_24jun05_en_pdf.pdf. Accessed March 7, 2008
  3. 3.
    Earnshaw SR, Hicks K, Richter A et al (2007) A linear programming model for allocating HIV prevention funds with state agencies: a pilot study. Health Care Manage Sci 10(3):239–252 doi: 10.1007/s10729-007-9017-8 CrossRefGoogle Scholar
  4. 4.
    Ruiz M, Gable A, Kaplan EH et al. (eds) (2001) No time to lose: getting more from HIV prevention. National Academy Press, Washington, DCGoogle Scholar
  5. 5.
    Holtgrave DR, Kelly JA (1996) Preventing HIV/AIDS among high-risk urban women: the cost–effectiveness of a behavioral group intervention. Am J Public Health 86:1442–1445CrossRefGoogle Scholar
  6. 6.
    Pinkerton SD, Holtgrave DR, Di Franceisco WJ et al (1998) Cost effectiveness of a community-level HIV risk reduction intervention. Am J Public Health 88:1239–1242CrossRefGoogle Scholar
  7. 7.
    Kahn JG, Kegeles SM, Hays R et al (2001) The cost–effectiveness of the Mpowerment Project, a community-level intervention for young gay men. J Acquir Immune Defic Syndr 27(5):482–491Google Scholar
  8. 8.
    Dandona L, Sisodia P, Kumar SG et al (2005) HIV prevention programmes for female sex workers in Andhra Pradesh, India: outputs, cost and efficiency. BMC Public Health 5(Sep 24):98CrossRefGoogle Scholar
  9. 9.
    Heumann KS, Marx R, Lawrence SJ et al (2001) Cost–effectiveness of prevention referrals for high-risk HIV negatives in San Francisco. AIDS Care 13:637–642 doi: 10.1080/09540120120063269 CrossRefGoogle Scholar
  10. 10.
    Pinkerton SD, Holtgrave DR, Valdiserri RO (1997) Cost–effectiveness of HIV-prevention skills training for men who have sex with men. AIDS 11(3):347–357 doi: 10.1097/00002030-199703110-00013 CrossRefGoogle Scholar
  11. 11.
    Ratcliffe J, Ades AE, Gibb D et al (1998) Prevention of mother-to-child transmission of HIV-1 infection: alternative strategies and their cost effectiveness. AIDS 12(11):1381–1388 doi: 10.1097/00002030-199811000-00021 CrossRefGoogle Scholar
  12. 12.
    Rauner MS, Brailsford SC, Flessa S (2005) Use of discrete-event simulation to evaluate strategies for the prevention of mother-to-child transmission of HIV in developing countries. J Oper Res Soc 56(2):222–233 doi: 10.1057/palgrave.jors.2601884 CrossRefGoogle Scholar
  13. 13.
    Kaplan EH (1995) Economic analysis of needle exchange. AIDS 9(10):1113–1119 doi: 10.1097/00002030-199510000-00001 CrossRefGoogle Scholar
  14. 14.
    Brandeau ML, Zaric GS, de Angelis V (2005) Improved allocation of HIV prevention resources: using information about program effectiveness. Health Care Manage Sci 8(1):19–28 doi: 10.1007/s10729-005-5213-6 CrossRefGoogle Scholar
  15. 15.
    Brandeau ML, Zaric GS, Richter A (2003) Optimal resource allocation for epidemic control among multiple independent populations: beyond cost effectiveness analysis. J Health Econ 22(4):575–598 doi: 10.1016/S0167-6296(03)00043-2 CrossRefGoogle Scholar
  16. 16.
    Richter A, Brandeau ML, Owens DK (1999) An analysis of optimal resource allocation for prevention of infection with human immunodeficiency virus (HIV) in injection drug users and non-users. Med Decis Mak 19(2):167–179 doi: 10.1177/0272989X9901900207 CrossRefGoogle Scholar
  17. 17.
    Zaric GS, Brandeau ML (2001) Optimal investment in a portfolio of HIV prevention programs. Med Decis Mak 21(5):391–408 doi: 10.1177/02729890122062695 CrossRefGoogle Scholar
  18. 18.
    Zaric GS, Brandeau ML (2001) Resource allocation for epidemic control over short time horizons. Math Biosci 171(1):33–58 doi: 10.1016/S0025-5564(01)00050-5 CrossRefGoogle Scholar
  19. 19.
    Zaric GS, Brandeau ML (2007) A little planning goes a long way: multi-level allocation of HIV prevention resources. Med Decis Mak 27(1):71–81 doi: 10.1177/0272989X06297395 CrossRefGoogle Scholar
  20. 20.
    Kaplan EH, Pollack H (1998) Allocating HIV prevention resources. Socio-Econ Plann Sci 32(4):257–263 doi: 10.1016/S0038-0121(98)00002-0 CrossRefGoogle Scholar
  21. 21.
    Kaplan EH (1998) Economic evaluation and HIV prevention community planning. A policy analyst’s perspective. In: Holtgrave DR (ed) Handbook of HIV prevention policy analysis. Plenum, New York, pp 177–193Google Scholar
  22. 22.
    Friedrich CM, Brandeau ML (1998) Using simulation to find optimal funding levels for HIV prevention programs with different costs and effectiveness. In: Katzper M, Anderson JG (eds) Proceedings of the 1998 Medical Sciences Simulation Conference. The Society for Computer Simulation International, San Diego, pp 58–64Google Scholar
  23. 23.
    Holtgrave DR, Qualls NL (1995) Threshold analysis and programs for prevention of HIV infection. Med Decis Mak 15(4):311–317 doi: 10.1177/0272989X9501500402 CrossRefGoogle Scholar
  24. 24.
    Sanders GD, Bayoumi AM, Sundaram V et al (2005) Cost effectiveness of screening for HIV in the era of highly active antiretroviral therapy. N Engl J Med 352(6):32–47 doi: 10.1056/NEJMsa042657 CrossRefGoogle Scholar
  25. 25.
    Walensky RP, Weinstein MC, Kimmel AD et al (2005) Routine HIV testing: an economic evaluation of current guidelines. Am J Med 118(3):292–300 doi: 10.1016/j.amjmed.2004.07.055 CrossRefGoogle Scholar
  26. 26.
    Zaric GS, Barnett PG, Brandeau ML (2000) HIV transmission and the cost effectiveness of methadone maintenance. Am J Public Health 90(7):1100–1111CrossRefGoogle Scholar
  27. 27.
    Armbruster B, Brandeau ML (2007) Optimal mix of screening and contact tracing for endemic diseases. Math Biosci 209(2):386–402 doi: 10.1016/j.mbs.2007.02.007 CrossRefGoogle Scholar
  28. 28.
    Kahn JG, Marseille E, Auvert B (2006) Cost effectiveness of male circumcision for HIV prevention in a South African setting. PLoS Med 3(12):2349–2358 doi: 10.1371/journal.pmed.0030517 CrossRefGoogle Scholar
  29. 29.
    Goldie SJ, Paltiel AD, Weinstein MC et al (2003) Projecting the cost–effectiveness of adherence interventions in persons with human immunodeficiency virus infection. Am J Med 115(8):632–641 doi: 10.1016/j.amjmed.2003.07.007 CrossRefGoogle Scholar
  30. 30.
    Owens DK (1998) Interpretation of cost–effectiveness analyses. J Gen Intern Med 13:716–717 Editorial doi: 10.1046/j.1525–1497.1998.00211.x CrossRefGoogle Scholar
  31. 31.
    World Health Organization (2002) The world health report 2002 - reducing risks, promoting healthy life. World Health Organization, Geneva, SwitzerlandGoogle Scholar
  32. 32.
    Herbst JH, Sherba RT, Crepaz N et al (2005) A meta-analytic review of HIV behavioral interventions for reducing sexual risk behavior of men who have sex with men. J Acquir Immune Defic Syndr 39(2):228–241Google Scholar
  33. 33.
    Kaplan EH (1989) Needles that kill: modeling human immunodeficiency virus transmission via shared drug injection equipment in shooting galleries. Rev Infect Dis 11(2):289–298 Published erratum appears in Rev Infect Dis 11(4):672, 1989Google Scholar
  34. 34.
    Zaric GS, Brandeau ML, Barnett PG (2000) Methadone maintenance and HIV prevention: a cost effectiveness analysis. Manage Sci 46(8):1013–1031 doi: 10.1287/mnsc.46.8.1013.12025 CrossRefGoogle Scholar
  35. 35.
    Guinness L, Kumaranayake L, Hanson K (2007) A cost function for HIV prevention services: is there a ‘u’-shape? Cost Eff Resour Alloc 5(Nov 5):13CrossRefGoogle Scholar
  36. 36.
    Marseille E, Dandona L, Marshall N et al (2007) HIV prevention costs and program scale: data from the PANCEA project in five low and middle-income countries. BMC Health Serv Res 7(Jul 12):108CrossRefGoogle Scholar
  37. 37.
    Bailey NTJ (1975) The mathematical theory of infectious diseases and its applications. Hafner, New YorkGoogle Scholar
  38. 38.
    Des Jarlais DC, Friedman SR, Sotheran JL et al (1994) Continuity and change within an HIV epidemic. Injecting drug users in New York City, 1984 through 1992. JAMA 271(2):121–127 doi: 10.1001/jama.271.2.121 CrossRefGoogle Scholar
  39. 39.
    Longini IM, Clark WS, Byers RH et al (1989) Statistical analysis of the stages of HIV infection using a Markov model. Stat Med 8(7):831–843 doi: 10.1002/sim.4780080708 CrossRefGoogle Scholar
  40. 40.
    Schackman BR, Gebo KA, Walensky RP et al (2006) The lifetime cost of current human immunodeficiency virus care in the United States. Med Care 44(11):990–997 doi: 10.1097/01.mlr.0000228021.89490.2a CrossRefGoogle Scholar
  41. 41.
    Altice FL, Maru DS, Bruce RD et al (2007) Superiority of directly administered antiretroviral therapy over self-administered therapy among HIV-infected drug users: a prospective, randomized, controlled trial. Clin Infect Dis 45(6):770–778 doi: 10.1086/521166 CrossRefGoogle Scholar
  42. 42.
    Lucas GM, Weidle PJ, Hader S et al (2004) Directly administered antiretroviral therapy in an urban methadone maintenance clinic: a nonrandomized comparative study. Clin Infect Dis 38(Suppl 5):S409–S413 doi: 10.1086/421405 CrossRefGoogle Scholar
  43. 43.
    Lucas GM, Mullen BA, Weidle PJ et al (2006) Directly administered antiretroviral therapy in methadone clinics is associated with improved HIV treatment outcomes, compared with outcomes among concurrent comparison groups. Clin Infect Dis 42(11):1628–1635 doi: 10.1086/503905 CrossRefGoogle Scholar
  44. 44.
    Kaplan EH, O’Keefe E (1993) Let the needles do the talking! Evaluating the New Haven needle exchange. Interfaces 23(1):7–26CrossRefGoogle Scholar
  45. 45.
    National Aeronautics and Space Administration (2007) GDP inflation calculator. http://cost.jsc.nasa.gov/inflateGDP.html. Accessed March 7, 2008
  46. 46.
    Barnett PG (1999) The cost–effectiveness of methadone maintenance as a health care intervention. Addiction 94(4):479–488 doi: 10.1046/j.1360-0443.1999.9444793.x CrossRefGoogle Scholar
  47. 47.
    Moss AR, Vranizan K, Gorter R et al (1994) HIV seroconversion in intravenous drug users in San Francisco, 1985–1990. AIDS 8(2):223–231 doi: 10.1097/00002030-199402000-00010 CrossRefGoogle Scholar
  48. 48.
    Friedman SR, Lieb S, Tempalski B et al (2005) HIV among injection drug users in large U.S. metropolitan areas, 1998. J Urban Health 82(3):434–445 doi: 10.1093/jurban/jti088 Google Scholar
  49. 49.
    Long EF, Brandeau ML, Galvin CM et al (2006) Slowing the HIV epidemic in St. Petersburg, Russia: effectiveness and cost–effectiveness of expanded antiretroviral therapy. AIDS 20(17):2207–2215 doi: 10.1097/QAD.0b013e328010c7d0 CrossRefGoogle Scholar
  50. 50.
    Armbruster B, Brandeau ML (2007) Contact tracing to control infectious disease: when enough is enough. Health Care Manage Sci 10(4):341–355 doi: 10.1007/s10729-007-9027-6 CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  1. 1.Department of Management Science and EngineeringStanford UniversityStanfordUSA
  2. 2.Ivey School of BusinessUniversity of Western OntarioLondonCanada

Personalised recommendations