A new approach to outliers in meta-analysis

Abstract

The synthesis of evidence from trials and medical studies using meta-analysis is essential for Evidence Based Medicine. However, problematical outlying results often occur even under the random-effects model. We propose a model that allows a long-tailed distribution for the random effect, which removes the necessity for an arbitrary decision to include or exclude outliers. In this approach, they are included, but with a reduced weight. We also introduce a modification of the forest plot to show the downweighting of outliers. We illustrate the methodology and its usefulness by carrying out both frequentist and Bayesian meta-analyses using data sets from the Cochrane Collaboration.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

References

  1. 1.

    Copas J, Jackson D (2004) A bound for publication bias based on the fraction of unpublished studies. Biometrics 60:146–153

    Article  Google Scholar 

  2. 2.

    Baker RD, Jackson D (2006) Using journal impact factors to correct for the publication bias of medical studies. Biometrics 62:785–792

    Article  Google Scholar 

  3. 3.

    Sutton AJ, Abrams KR, Jones DR, Sheldon TA, Song F (2000) Methods for meta-analysis in medical research. Wiley, Chichester

    Google Scholar 

  4. 4.

    Biggerstaff BJ, Tweedie RL (1997) Incorporating variability of estimates of heterogeneity in the random effects model in meta-analysis. Stat Med 16:753–768

    Article  Google Scholar 

  5. 5.

    Simonian R, Laird N (1986) Meta-analysis in clinical trials. Control Clin Trials 7:177–188

    Article  Google Scholar 

  6. 6.

    Hardy RJ, Thompson SG (1996) A likelihood approach to meta-analysis with random effects. Stat Med 15:619–629

    Article  Google Scholar 

  7. 7.

    Barnett V (1978) The study of outliers: purpose and model. Appl Stat 27:242–250

    Article  Google Scholar 

  8. 8.

    Fleiss JL (1993) The statistical basis of meta analysis. Stat Methods Med Res 2:121–145

    Article  Google Scholar 

  9. 9.

    Hardy RJ, Thompson SG (1998) Detecting and describing heterogeneity in meta-analysis. Stat Med 17:841–856

    Article  Google Scholar 

  10. 10.

    Lee KJ, Thompson SG (2008) Flexible parametric models for random effects distributions. Stat Med 27:418–434. Available online at http://www3.interscience.wiley.com/cgi-bin/abstract/114240283/ABSTRACT

    Article  Google Scholar 

  11. 11.

    Smith TC, Spiegelhalter DJ, Thomas A (1995) Bayesian approaches to random-effects meta-analysis: a comparative study. Stat Med 14:2685–2699

    Article  Google Scholar 

  12. 12.

    Van Houwelingen HC, Zwinderman KH, Stijnen T (1993) A bivariate approach to meta-analysis. Stat Med 12:2273–2284

    Article  Google Scholar 

  13. 13.

    Aitkin M (1999) Meta-analysis by random effect modelling in generalized linear models. Stat Med 18:2343–2351

    Article  Google Scholar 

  14. 14.

    Johnson NL, Kotz S, Balakrishnan N (1994) Continuous univariate distributions. Wiley, New York

    Google Scholar 

  15. 15.

    Burnham KP, Anderson DR (1998) Model Selection and Inference: a practical information-theoretic approach. Springer, New York

    Google Scholar 

  16. 16.

    Tarone RE (1985) Score tests. In: Kotz S, Johnson NL (eds) Encyclopaedia of Statistical Sciences. Wiley, New York

    Google Scholar 

  17. 17.

    Subbotin MT (1923) On the law of frequency of errors. Mathematicheskii Sbornik 31:296–301

    Google Scholar 

  18. 18.

    Fisher RA (1925) Expansion of “Student’s” integral in powers of n  − 1. Metron 5:109–120

    Google Scholar 

  19. 19.

    Geweke J (1991) Genereric, algorithmic approaches to Monte-Carlo integration in Bayesian inference. In: Flournoy N, Tsutakawa RK (eds) Statistical Multiple Integration, pp 117–135

  20. 20.

    Fioravanti M, Yanagi M (2005) Cytidinediphosphocholine (CDP-choline) for cognitive and behavioural disturbances associated with chronic cerebral disorders in the elderly (Review). The Cochrane Collaboration, www.cochrane.org/reviews/en/ab000269.html

  21. 21.

    Marinho VCC, Higgins JPT, Logan S, Sheiham A (2002) Fluoride toothpastes for preventing dental caries in children and adolescents. The Cochrane Collaboration, www.cochrane.org/reviews/en/ab002278.html

  22. 22.

    Edwards JE, Oldman A, Smith L, Collins SL, Carroll D, Wiffen PJ, McQuay HJ, Moore RA (2008) Single dose oral aspirin for acute pain (meta-analysis). The Cochrane Collaboration, www.cochrane.org/reviews/en/ab002067.html

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Rose Baker.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Baker, R., Jackson, D. A new approach to outliers in meta-analysis. Health Care Manage Sci 11, 121–131 (2008). https://doi.org/10.1007/s10729-007-9041-8

Download citation

Keywords

  • Subbotin distribution
  • Arcsinh transformation
  • Score test
  • Importance sampling