Advertisement

On the Number of Group-Separable Preference Profiles

  • Alexander KarpovEmail author
Article
  • 27 Downloads

Abstract

The paper studies group-separable preference profiles. Such a profile is group-separable if for each subset of alternatives there is a partition in two parts such that each voter prefers each alternative in one part to each alternative in the other part. We develop a parenthesization representation of group-separable domain. The precise formula for the number of group-separable preference profiles is obtained. The recursive formula for the number of narcissistic group-separable preference profiles is obtained. Such a profile is narcissistic group-separable if it is group-separable and each alternative is preferred the most by exactly one voter.

Keywords

Schröder paths Schröder numbers Separable permutations Permutation patterns Narcissistic preferences 

Notes

References

  1. Albert M, Homberger C, Pantone J (2015) Equipopularity classes in the separable permutations. Electron J Combin 22(2), P2.2Google Scholar
  2. Arrow KJ (1963) Social choice and individual values. Yale University Press, New HavenGoogle Scholar
  3. Ballester MA, Haeringer G (2011) A characterization of the single-peaked domain. Soc Choice Welf 36:305–322CrossRefGoogle Scholar
  4. Booth E, Lueker G (1976) Testing for the consecutive ones property, interval graphs, and graph planarity using PQ-trees algorithms. J Comput Syst Sci 13:335–379CrossRefGoogle Scholar
  5. Bose P, Buss JF, Lubiw A (1998) Pattern matching for permutations. Inf Process Lett 65:277–283CrossRefGoogle Scholar
  6. Brandt F, Brill M, Seedig HG (2011) On the fixed-parameter tractability of composition-consistent tournament solutions. In: Proceedings of the 22nd international joint conference on artificial intelligence (IJCAI). AAAI Press, pp 85–90Google Scholar
  7. Brandt F, Brill M, Hemaspaandra E, Hemaspaandra LA (2015) Bypassing combinatorial protections: polynomial-time algorithms for single-peaked electorates. J Artif Intell Res 53:439–496CrossRefGoogle Scholar
  8. Bredereck R, Chen J, Woeginger GJ (2016) Are there any nicely structured preference profiles nearby? Math Soc Sci 79(2016):61–73CrossRefGoogle Scholar
  9. Campbell DE, Kelly JS (2002) Impossibility theorems in the Arrovian framework. In: Arrow KJ, Sen AK, Suzumura K (eds) Handbook of social choice and welfare, Chap 1, vol 1. Elsevier, AmsterdamGoogle Scholar
  10. Chen J, Finnendahl UP (2018) On the number of single-peaked narcissistic or single-crossing narcissistic preference profiles. Discrete Math 341:1225–1236CrossRefGoogle Scholar
  11. Chen WYC, Mansour T, Yan SHF (2006) Matchings avoiding partial patterns. Electron J Combin 13:#R112Google Scholar
  12. Danilov VI, Koshevoy GA (2013) Maximal Condorcet domains. Order 30:181–194CrossRefGoogle Scholar
  13. Deutsch E (2001) A bijective proof of the equation linking the Schröder numbers, large and small. Discrete Math 241(1–3):235–240CrossRefGoogle Scholar
  14. Dittrich T (2018) Eine vollständige Klassifikation von Condorcet Domains für kleine Alternativenmengen. Dissertation. Karlsruher Instituts für Technologie (KIT)Google Scholar
  15. Ehrenfeucht A, Harju T, ten Pas P, Rozenberg G (1998) Permutations, parenthesis words, and Schröder numbers. Discrete Math 190:259–264CrossRefGoogle Scholar
  16. Elkind E, Faliszewski P, Slinko A (2012) Clone structures in voters’ preferences. In: Proceedings of the 13th ACM conference on electronic commerce (EC). ACM, pp 496–513Google Scholar
  17. Elkind E, Lackner M, Peters D (2017) Structured preferences. In: Endriss U (ed) Trends in Computational social choice, Chap 10. AI Access, pp 187–207Google Scholar
  18. Faliszewski P, Hemaspaandra E, Hemaspaandra LA, Rothe J (2011) The shield that never was: societies with single-peaked preferences are more open to manipulation and control. Inf Comput 209(2):89–107CrossRefGoogle Scholar
  19. Faliszewski P, Hemaspaandra E, Hemaspaandra LA (2014) The complexity of manipulative attacks in nearly single-peaked electorates. Artif Intell 207:69–99CrossRefGoogle Scholar
  20. Gehrlein WV, Fishburn PC (1976) The probability of the paradox of voting: a computable solution. J Econ Theory 13:14–25CrossRefGoogle Scholar
  21. Gehrlein WV, Fishburn PC (1979) Proportions of profiles with a majority candidate. Comput Math Appl 5:117–124CrossRefGoogle Scholar
  22. Inada K (1964) A note on the simple majority decision rule. Econometrica 32(4):525–531CrossRefGoogle Scholar
  23. Inada K (1969) The simple majority decision rule. Econometrica 37(3):490–506CrossRefGoogle Scholar
  24. Kitaev S (2011) Why such patterns? A few motivation points. In: Kitaev S (ed) Patterns in permutations and words. Springer, Berlin, pp 29–80CrossRefGoogle Scholar
  25. Lackner ML, Lackner M (2017) On the likelihood of single-peaked preferences. Soc Choice Welf 48(4):717–745CrossRefGoogle Scholar
  26. Laslier J-F (1997) Tournament solutions and majority voting. Springer, Berlin, p 1997CrossRefGoogle Scholar
  27. Monjardet B (2009) Acyclic domains of linear orders: a survey. In: Brams S, Gehrlein W, Roberts F (eds) The mathematics of preference, choice and order. Springer, Berlin, pp 136–160Google Scholar
  28. Murtagh F (1984) Counting dendrograms: a survey. Discrete Applied Math 7:191–199CrossRefGoogle Scholar
  29. OEIS. The on-line encyclopedia of integer sequences, published electronically at http://oeis.org
  30. Puppe C (2018) The single-peaked domain revisited: a simple global characterization. J Econ Theory 176:55–80CrossRefGoogle Scholar
  31. Sen AK (1966) A possibility theorem on majority decisions. Econometrica 34(2):491–499CrossRefGoogle Scholar
  32. Stankova ZE (1994) Forbidden subsequences. Discrete Math 132:291–316CrossRefGoogle Scholar
  33. Stanley RP (1997) Hipparchus, Plutarch, Schröder, and Hough. Am Math Mon 104(4):344–350Google Scholar
  34. Tideman TN (1987) Independence of clones as a criterion for voting rules. Soc Choice Welf 4:185–206CrossRefGoogle Scholar
  35. Van Deemen MA (2014) On the empirical relevance of Condorcet’s paradox. Public Choice 158:311–330CrossRefGoogle Scholar
  36. West J (1995) Generating trees and the Catalan and Schröder numbers. Discrete Math 146:247–262CrossRefGoogle Scholar
  37. West J (1996) Generating trees and forbidden subsequences. Discrete Math 157:363–374CrossRefGoogle Scholar
  38. Zavist TM, Tideman TN (1989) Complete independence of clones in the ranked pairs rule. Soc Choice Welf 6:167–173CrossRefGoogle Scholar

Copyright information

© Springer Nature B.V. 2019

Authors and Affiliations

  1. 1.National Research University Higher School of EconomicsMoscowRussia
  2. 2.Institute of Control ScienceRussian Academy of ScienceMoscowRussia

Personalised recommendations