Advertisement

Group Decision and Negotiation

, Volume 21, Issue 1, pp 99–127 | Cite as

Argumentation-Based Qualitative Preference Modelling with Incomplete and Uncertain Information

  • Wietske VisserEmail author
  • Koen V. Hindriks
  • Catholijn M. Jonker
Article

Abstract

This paper presents an argumentation-based framework for the modelling of, and automated reasoning about multi-attribute preferences of a qualitative nature. The framework presents preferences according to the lexicographic ordering that is well-understood by humans. Preferences are derived in part from knowledge. Knowledge, however, may be incomplete or uncertain. The main contribution of the paper is that it shows how to reason about preferences when only incomplete or uncertain information is available. We propose a strategy that allows reasoning with incomplete information and discuss a number of strategies to handle uncertain information. It is shown how to extend the basic framework for modelling preferences to incorporate these strategies.

Keywords

Qualitative multi-attribute preferences Argumentation Incomplete information Uncertain information 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Amgoud L, Cayrol C (2002) Inferring from inconsistency in preference-based argumentation frameworks. J Autom Reason 29: 125–169CrossRefGoogle Scholar
  2. Amgoud L, Prade H (2009) Using arguments for making and explaining decisions. Artif Intell 173(3–4): 413–436CrossRefGoogle Scholar
  3. Amgoud L, Maudet N, Parsons S (2000) Modelling dialogues using argumentation. In: Proceedings of the fourth international conference on multi-agent systems, pp 31–38Google Scholar
  4. Amgoud L, Bonnefon JF, Prade H (2005) An argumentation-based approach to multiple criteria decision. In: Proceedings of the eighth European conference on symbolic and quantitative approaches to reasoning with uncertainty (ECSQARU 2005), pp 269–280Google Scholar
  5. Bench-Capon TJM, Dunne PE (2007) Argumentation in artificial intelligence. Artif Intell 171: 619–641CrossRefGoogle Scholar
  6. Bonet B, Geffner H (1996) Arguing for decisions: a qualitative model of decision making. In: Proceedings of the 12th conference on uncertainty in artificial intelligence (UAI 1996), pp 98–105Google Scholar
  7. Bonnefon JF, Fargier H (2006) Comparing sets of positive and negative arguments: empirical assessment of seven qualitative rules. In: Proceedings of the 17th European conference on artificial intelligence (ECAI 2006), IOS Press, pp 16–20Google Scholar
  8. Boutilier C (1994) Toward a logic for qualitative decision theory. In: Proceedings of the fourth international conference on principles of knowledge representation and reasoning (KR 1994), pp 75–86Google Scholar
  9. Boutilier C, Brafman RI, Domshlak C, Hoos HH, Poole D (2004) CP-nets: a tool for representing and reasoning with conditional ceteris paribus preference statements. J Artif Intell Res 21: 135–191Google Scholar
  10. Brewka G (2004) A rank based description language for qualitative preferences. In: Proceedings of the sixteenth European conference on artificial intelligence (ECAI 2004), pp 303–307Google Scholar
  11. Brewka G, Benferhat S, Berre D (2004) Qualitative choice logic. Artif Intell 157(1–2): 203–237CrossRefGoogle Scholar
  12. Coste-Marquis S, Lang J, Liberatore P, Marquis P (2004) Expressive power and succinctness of propositional languages for preference representation. In: Proceedings of the ninth international conference on principles of knowledge representation and reasoning (KR 2004), pp 203–212Google Scholar
  13. Doyle J, Thomason RH (1999) Background to qualitative decision theory. AI Mag 20(2): 55–68Google Scholar
  14. Dubois D, Fargier H, Perny P (2003) Qualitative decision theory with preference relations and comparative uncertainty: an axiomatic approach. Artif Intell 148: 219–260CrossRefGoogle Scholar
  15. Dubois D, Fargier H, Bonnefon JF (2008) On the qualitative comparison of decisions having positive and negative features. J Artif Intell Res 32: 385–417Google Scholar
  16. Dung PM (1995) On the acceptability of arguments and its fundamental role in nonmonotonic reasoning, logic programming and n-person games. Artif Intell 77: 321–357CrossRefGoogle Scholar
  17. Huber F (2009) Belief and degrees of belief. In: Huber F, Schmidt-Petri C (eds) Degrees of belief, Synthese Library, vol 342. Springer, Netherlands, pp 1–33Google Scholar
  18. Kaci S, van der Torre L (2008) Preference-based argumentation: arguments supporting multiple values. Int J Approx Reason 48(3): 730–751CrossRefGoogle Scholar
  19. Keeney RL, Raiffa H (1993) Decisions with multiple objectives: preferences and value trade-offs. Cambridge University Press, CambridgeGoogle Scholar
  20. Liu F (2008) Changing for the better: preference dynamics and agent diversity. PhD thesis, Universiteit van AmsterdamGoogle Scholar
  21. Pollock JL (2001) Defeasible reasoning with variable degrees of justification. Artif Intell 133(1-2): 233–282CrossRefGoogle Scholar
  22. Prakken H (2005) A study of accrual of arguments, with applications to evidential reasoning. In: Proceedings of the tenth international conference on artificial intelligence and law (ICAIL 2005), pp 85–94Google Scholar
  23. Prakken H, Sartor G (1997) Argument-based extended logic programming with defeasible priorities. J Appl Non-Class Logics 7: 25–75Google Scholar
  24. Rahwan I, Ramchurn SD, Jennings NR, McBurney P, Parsons S, Sonenberg L (2004) Argumentation-based negotiation. Knowl Eng Rev 18(4): 343–375CrossRefGoogle Scholar
  25. Vreeswijk GAW (1997) Abstract argumentation systems. Artif Intell 90(1–2): 225–279CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2011

Authors and Affiliations

  • Wietske Visser
    • 1
    Email author
  • Koen V. Hindriks
    • 1
  • Catholijn M. Jonker
    • 1
  1. 1.Man Machine Interaction GroupDelft University of TechnologyDelftThe Netherlands

Personalised recommendations