Advertisement

Group Decision and Negotiation

, Volume 16, Issue 4, pp 335–346 | Cite as

Content Analysis Through the Machine Learning Mill

  • Vivi NastaseEmail author
  • Sabine Koeszegi
  • Stan Szpakowicz
Article

Abstract

We present an analysis of partial automation of content analysis using machine learning methods. We use a decision-tree induction system to learn from manually categorized negotiation transcripts of electronic buyer–seller negotiations. The data we use were gathered using the Web-based negotiation support systems Inspire and SimpleNS. We experiment with various ways of representing the data to find the solution that gives the best results. The experiments show that we can identify, in relatively small data sets, linguistic features of interest for the detection of negotiation behaviour and negotiation-specific topics.

Keywords

content analysis machine learning 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Adler N. J. (1993). Do cultures vary?. In: Weinshall T. D. (eds), Societal Culture and Management. Walter de Gruyter & Co., Berlin, pp. 23–46Google Scholar
  2. Adrianson L. (2001). Gender and computer-mediated communication: Group processes in problem solving. Computers in Human Behaviour 17:71–94CrossRefGoogle Scholar
  3. Brennan R. L., Prediger D. J. (1981). Coefficient kappa: Some uses, misuses, and alternatives. Educational and Psychological Measurement 41:687–699CrossRefGoogle Scholar
  4. Brett J. M. (1998). Inter- and intra-cultural negotiation: U.S. and japanese negotiators. Academy of Management Journal 5(41):495–510CrossRefGoogle Scholar
  5. Carnevale, Peter J. and Carsten K.W. De Drel, (eds.) (2005). Journal of International Negotiation, Special issue on Methods of Negotiation Research II, volume 10(1). Brill Academic PublishersGoogle Scholar
  6. Cohen J. (1960). A coefficient of agreement for nominal scales. Educational and Psychological Measurement 20:37–46CrossRefGoogle Scholar
  7. Druckman D. (2005). Doing research: methods of inquiry for conflict analysis. Sage Publications, Inc., LondonGoogle Scholar
  8. Dubrovsky V. J., Kiesler S., Sethna B. N. (1991). The equalization phenomenon: status effect in computer-mediated and face-to-face decision-making groups. Human-Computer Interaction 6:119–146CrossRefGoogle Scholar
  9. Eagly A. H. (1987). Sex differences in social behaviour: a social role interpretation. Erlbaum, Hillsdale, NJGoogle Scholar
  10. Friedman R. A., Gal S. (1991). Managing around roles: building groups in labor negotiations. Journal of Applied Behavioural science 3(27):356–387CrossRefGoogle Scholar
  11. Glaser B. G., Strauss A. L. (1967). The discovery of grounded theory: strategies for qualitative research. Aldine, ChicagoGoogle Scholar
  12. Graham J. L., Mintu A. T., Rodgers W. (1994). Explorations of negotiation behaviors in ten foreign cultures using a model developed in the united states. Management Science 1(40):72–95CrossRefGoogle Scholar
  13. Holsti O. R. (1969). Content analysis for the social sciences and the humanities. Addison-Wesley, Reading, MAGoogle Scholar
  14. Kersten G. E., Noronha S. J. (1999). Www-based negotiation support: Design, implementation and use. Decision Support Systems 25:135–154CrossRefGoogle Scholar
  15. Kersten, G. E. (2004). E-negotiation Systems: Interaction of People and Technologies to Resolve Conflicts. Technical Report INR 08/04, InterNeg Research. http://www.interneg.org/.
  16. Kiesler, S. (1986). Thinking ahead, the hidden messages in computer networks. Harvard Business Review, 1Google Scholar
  17. Koeszegi, S. T., E.-M. Pesendorfer, and S. W. Stolz. (2006). Gender Salience in Electronic Negotiations. Electronic Markets, 16(3). ForthcomingGoogle Scholar
  18. Krippendorff K. (1980). Content analysis. An introduction to its methodology. Sage, Beverly Hills, CAGoogle Scholar
  19. Lee E. -J. (2003). Effects of “gender” of the computer on informational social influence: the moderating role of task type. International Journal of Human-Computer Studies 58:347–362CrossRefGoogle Scholar
  20. Mayring, P. (2002). “Qualitative content analysis – research instrument or mode of interpretation?” in: M. Kriegelmann (ed.), The role of the researcher in qualitative psychology, pp. 139–148. Huber, TübingenGoogle Scholar
  21. Mayring P. (2003). Phases, transitions and interruptions: modelling processes in multi-party negotiations. International journal of conflict management 3/4(14):191–210Google Scholar
  22. Putnam L. L. (2003). Dialectical tensions and rhetorical tropes in negotiations. Organization studies 1(25):35–53Google Scholar
  23. Sokolova, M. and S. Szpakowicz. (2005). Analysis and classification of strategies in electronic negotiations. in Proceedings of Canadian AI 2005, pages 145–157, Victoria, BC, CanadaGoogle Scholar
  24. Sokolova, M., V. Nastase, and S. Szpakowicz. (2004). Language in electcronic negotiations: patterns in completed and uncompleted negotiations. in Proceedings of ICON 2004, pages 142–151, Hyderabad, IndiaGoogle Scholar
  25. Sproull L., Kiesler S. (1986). Reducing social context cues: electronic mail in organizational communication. Management Science 11(32):1492–1512Google Scholar
  26. Srnka, K. J. and S. T. Koeszegi. (2006). From words to numbers – how to transform rich qualitative data into meaningful quantitative results: Guidelines and exemplary study. In Schmalenbach’s Business Review. ForthcomingGoogle Scholar
  27. Weingart L. R., Thompson L. L., Bazerman M. H., Carroll J. S. (1990). Tactical behaviour and negotiation outcomes. The international journal of conflict management 1(1):7–31Google Scholar
  28. Weingart L. R., Olekalns M., Smith P. L. (2004). Quantitative coding of negotiation behaviour. International Negotiation 9:441–455CrossRefGoogle Scholar
  29. Weisband S. P., Schenider S. K., Connolly T. (1995). Computer mediated communication and social information: Status salience and status differences. Academy of management journal 4(38):1124–1151CrossRefGoogle Scholar
  30. Witten I. E., Frank E. (2005). Data Mining: Practical Machine Learning Tools and Techniques 2nd edition. Morgan Kaufmann, San FranciscoGoogle Scholar

Copyright information

© Springer Science + Business Media B.V. 2006

Authors and Affiliations

  • Vivi Nastase
    • 1
    Email author
  • Sabine Koeszegi
    • 2
  • Stan Szpakowicz
    • 1
    • 3
  1. 1.School of Information Technology and EngineeringUniversity of OttawaOttawaCanada
  2. 2.Faculty of Business, Economics and StatisticsUniversity of ViennaViennaAustria
  3. 3.Polish Academy of SciencesInstitute of Computer ScienceOrdona 21Poland

Personalised recommendations