Heterologous expression of the metallothionein PpMT2 gene from Physcomitrella patens confers enhanced tolerance to heavy metal stress on transgenic Arabidopsis plants

  • Yue LiuEmail author
  • Tao Kang
  • Jie-shan Cheng
  • Yan-jun Yi
  • Jun-jie Han
  • Hai-long Cheng
  • Qi Li
  • Na Tang
  • Mei-xia LiangEmail author
Original paper


Metallothioneins (MTs) play essential roles in plant resistance to heavy metal stress, as well as in the scavenging of reactive oxygen species. A number of metallothionein genes in angiosperm have been identified. However, their functions in Physcomitrella patens are still largely unknown. In this work, the function of PpMT2, a metallothionein encoding gene from Physcomitrella patens, was investigated. Sequence alignment and phylogenetic analyses demonstrated that PpMT2 encoded a metallothionein with conserved sequences as other MTs from Arabidopsis, rice, soybean, black nightshade, sedum and poke weed. RT-PCR analyses revealed that PpMT2 was strongly induced by CuSO4 and CdCl2 in Physcomitrella patens. Heterologous expression of PpMT2 led to improved tolerance to high concentrations of CuSO4 and CdCl2 in both Y2HGold yeast cells and transgenic Arabidopsis plants. These findings suggest that PpMT2 is involved in heavy metal stress responses in Physcomitrella patens, and could be used as a potential candidate gene for the genetic engineering of plants with improved resistance to heavy metal stress.


Arabidopsis Heavy metal stress Metallothionein Physcomitrella patens PpMT2 Transgenic plant 



We thank Prof. Yi-kun He (Capital Normal University, China) for providing Physcomitrella patens, and Ms. Jessie Zhang (Faculty of Health Sciences, McMaster University, Canada) for her critical reading and editing of this paper.


This work has been jointly supported by the following Grants: the National Nature Science Foundation of China (31872650); the Key R & D project of Shandong Province (2017NC210012, 2018GNC110007).

Compliance with ethical standards

Conflict of interest

We declare that we do not have any commercial or associative interest that represents a conflict of interest in connection with the work submitted.

Supplementary material

10725_2019_558_MOESM1_ESM.docx (689 kb)
Supplementary material 1 (DOCX 689 kb)


  1. Alscher RG, Erturk N, Heath LS (2002) Role of superoxide dismutases (SODs) in controlling oxidative stress in plants. J Exp Bot 53(372):1331–1341PubMedCrossRefGoogle Scholar
  2. Anjum NA, Sharma P, Gill SS, Hasanuzzaman M, Khan EA, Kachhap K, Mohamed AA, Thangavel P, Devi GD, Vasudhevan P, Sofo A, Khan NA, Misra AN, Lukatkin AS, Singh HP, Pereira E, Tuteja N (2016) Catalase and ascorbate peroxidase-representative H2O2-detoxifying heme enzymes in plants. Environ Sci Pollut Res Int 23(19):19002–19029PubMedCrossRefGoogle Scholar
  3. Ashton NW, Grimsley NH, Cove DJ (1979) Analysis of gametophytic development in the moss, Physcomitrella patens, using auxin and cytokinin resistant mutants. Planta 144(5):427–435PubMedCrossRefGoogle Scholar
  4. Auguy F, Fahr M, Moulin P, Brugel A, Laplaze L, Mzibri ME, Filali-Maltouf A, Doumas P, Smouni A (2013) Lead tolerance and accumulation in Hirschfeldia incana, a Mediterranean Brassicaceae from metalliferous mine spoils. PLoS ONE 8(5):e61932PubMedPubMedCentralCrossRefGoogle Scholar
  5. Auguy F, Fahr M, Moulin P, El Mzibri M, Smouni A, Filali-Maltouf A, Bena G, Doumas P (2015) Transcriptome changes in Hirschfeldia incana in response to lead exposure. Front Plant Sci 6:1231PubMedGoogle Scholar
  6. Buchanan-Wollaston V (1994) Isolation of cDNA clones for genes that are expressed during leaf senescence in Brassica napus (identification of a gene encoding a senescence-specific metallothionein-like protein). Plant Physiol 105(3):839–846PubMedPubMedCentralCrossRefGoogle Scholar
  7. Casterline JL, Barnett NM (1982) Cadmium-binding components in soybean plants. Plant Physiol 69(5):1004–1007PubMedPubMedCentralCrossRefGoogle Scholar
  8. Chakrabortty SPG (2006) Biomonitoring of trace element air pollution using mosses. Aerosol Air Qual Res 6:247–258CrossRefGoogle Scholar
  9. Chater CC, Caine RS, Tomek M, Wallace S, Kamisugi Y, Cuming AC, Lang D, MacAlister CA, Casson S, Bergmann DC, Decker EL, Frank W, Gray JE, Fleming A, Reski R, Beerling DJ (2016) Origin and function of stomata in the moss physcomitrella patens. Nat Plants 2:16179PubMedPubMedCentralCrossRefGoogle Scholar
  10. Cho SH, Hoang QT, Kim YY, Shin HY, Ok SH, Bae JM, Shin JS (2006) Proteome analysis of gametophores identified a metallothionein involved in various abiotic stress responses in Physcomitrella patens Plant Cell Rep 25(5):475–488PubMedCrossRefGoogle Scholar
  11. Choudhury S (2004) Induction of oxidative stress and ultrastructural changes in moss Taxithelium nepalense (Schwaegr.) Broth. under lead and arsenic phytotoxicity. Current science 87:342–348Google Scholar
  12. Clough SJ, Bent AF (1998) Floral dip: a simplified method for Agrobacterium-mediated transformation of Arabidopsis thaliana Plant J 16(6):735–743PubMedCrossRefGoogle Scholar
  13. Cozza R, Pangaro T, Maestrini P, Giordani T, Natali L, Cavallini A (2006) Isolation of putative type 2 metallothionein encoding sequences and spatial expression pattern in the seagrass Posidonia oceanica. Aquat Bot 85(4):317–323CrossRefGoogle Scholar
  14. de Framond AJ (1991) A metallothionein-like gene from maize (Zea mays). Cloning and characterization. FEBS Lett 290(1–2):103–106PubMedCrossRefGoogle Scholar
  15. Fryer MJ, Oxborough K, Mullineaux PM, Baker NR (2002) Imaging of photo-oxidative stress responses in leaves. J Exp Bot 53(372):1249–1254PubMedGoogle Scholar
  16. Garbisu C, Alkorta I (2001) Phytoextraction: a cost-effective plant-based technology for the removal of metals from the environment. Bioresour Technol 77(3):229–236PubMedCrossRefGoogle Scholar
  17. Gawel S, Wardas M, Niedworok E, Wardas P (2004) Malondialdehyde (MDA) as a lipid peroxidation marker. Wiad Lek 57(9–10):453–455PubMedGoogle Scholar
  18. Gill SS, Tuteja N (2010) Reactive oxygen species and antioxidant machinery in abiotic stress tolerance in crop plants. Plant Physiol Biochem 48(12):909–930PubMedCrossRefGoogle Scholar
  19. Gonzalez-Miqueo L, Elustondo D, Lasheras E, Bermejo R, Santamaria JM (2010) Heavy metal and nitrogen monitoring using moss and topsoil samples in a pyrenean forest catchment. Water Air Soil Poll 210(1–4):335–346CrossRefGoogle Scholar
  20. Gu CS, Liu LQ, Deng YM, Zhu XD, Huang SZ, Lu XQ (2015) The heterologous expression of the Iris lactea var. chinensis type 2 metallothionein IlMT2b gene enhances copper tolerance in Arabidopsis thaliana Bull Environ Contam Toxicol 94(2):247–253PubMedCrossRefGoogle Scholar
  21. Gumpu MB, Sethuraman S, Krishnan UM, Rayappan JBB (2015) A review on detection of heavy metal ions in water-an electrochemical approach. Sens Actuat B Chem 213:515–533CrossRefGoogle Scholar
  22. Guo WJ, Meetam M, Goldsbrough PB (2008) Examining the specific contributions of individual Arabidopsis metallothioneins to copper distribution and metal tolerance. Plant Physiol 146(4):1697–1706PubMedPubMedCentralCrossRefGoogle Scholar
  23. Hassinen VH, Tervahauta AI, Schat H, Karenlampi SO (2011) Plant metallothioneins–metal chelators with ROS scavenging activity? Plant Biol (Stuttg) 13(2):225–232CrossRefGoogle Scholar
  24. Hossain MA, Piyatida P, da Silva JAT, Fujita M (2012) Molecular mechanism of heavy metal toxicity and tolerance in plants: central role of glutathione in detoxification of reactive oxygen species and methylglyoxal and in heavy metal chelation. J Bot 2012:1–37CrossRefGoogle Scholar
  25. Huang GY, Wang YS (2010) Expression and characterization analysis of type 2 metallothionein from grey mangrove species (Avicennia marina) in response to metal stress. Aquat Toxicol 99(1):86–92PubMedCrossRefGoogle Scholar
  26. Jouili H, Bouazizi H, Ferjani E (2011) Plant peroxidases: biomarkers of metallic stress. Acta Physiol Plant 33(6):2075CrossRefGoogle Scholar
  27. Kar M, Mishra D (1976) Catalase, peroxidase, and polyphenoloxidase activities during rice leaf senescence. Plant Physiol 57(2):315–319PubMedPubMedCentralCrossRefGoogle Scholar
  28. Khan N, Naqvi F (2010) Effect of water stress on lipid peroxidation and antioxidant enzymes in local bread wheat hexaploids. J Food Agric Environ 8:521–526Google Scholar
  29. Kim YO, Patel DH, Lee DS, Song Y, Bae HJ (2011) High cadmium-binding ability of a novel Colocasia esculenta metallothionein increases cadmium tolerance in Escherichia coli and tobacco. Biosci Biotechnol Biochem 75(10):1912–1920PubMedCrossRefGoogle Scholar
  30. Li Y, Chen YY, Yang SG, Tian WM (2015) Cloning and characterization of HbMT2a, a metallothionein gene from Hevea brasiliensis Muell. Arg differently responds to abiotic stress and heavy metals. Biochem Biophys Res Commun 461(1):95–101PubMedCrossRefGoogle Scholar
  31. Lv Y, Deng X, Quan L, Xia Y, Shen ZJP, Soil, (2013) Metallothioneins BcMT1 and BcMT2 from Brassica campestris enhance tolerance to cadmium and copper and decrease production of reactive oxygen species in Arabidopsis thaliana Plant Soil 367(1):507–519CrossRefGoogle Scholar
  32. Mir G, Domenech J, Huguet G, Guo WJ, Goldsbrough P, Atrian S, Molinas M (2004) A plant type 2 metallothionein (MT) from cork tissue responds to oxidative stress. J Exp Bot 55(408):2483–2493PubMedCrossRefGoogle Scholar
  33. Mishra B, Sangwan NS (2019) Amelioration of cadmium stress in Withania somnifera by ROS management: active participation of primary and secondary metabolism. Plant Growth Regul 87(3):403–412CrossRefGoogle Scholar
  34. Mudalkar S, Golla R, Sengupta D, Ghatty S, Reddy AR (2014) Molecular cloning and characterisation of metallothionein type 2a gene from Jatropha curcas L., a promising biofuel plant. Mol Biol Rep 41(1):113–124PubMedCrossRefGoogle Scholar
  35. Murashige T, Skoog F (1962) A revised medium for rapid growth and bio assays with tobacco tissue cultures. Physiol Plant 15(3):473–497CrossRefGoogle Scholar
  36. Murphy A, Taiz L (1995) Comparison of metallothionein gene expression and nonprotein thiols in ten Arabidopsis ecotypes. Correlation with copper tolerance. Plant Physiol 109(3):945–954PubMedPubMedCentralCrossRefGoogle Scholar
  37. Mukherjee P, Choudhuri SA M (2006) Implications of water stress-induced changes in the levels of endogenous ascorbic acid and hydrogen peroxide in Vigna seedlings. Physiol Plant 58:166–170CrossRefGoogle Scholar
  38. Peskin AV, Winterbourn CC (2000) A microtiter plate assay for superoxide dismutase using a water-soluble tetrazolium salt (WST-1). Clin Chim Acta 293(1–2):157–166PubMedCrossRefGoogle Scholar
  39. Poikolainen J, Kubin E, Piispanen J, Karhu J (2004) Atmospheric heavy metal deposition in Finland during 1985–2000 using mosses as bioindicators. Sci Total Environ 318(1–3):171–185PubMedCrossRefGoogle Scholar
  40. Ren Y, Liu Y, Chen H, Li G, Zhang X, Zhao J (2012) Type 4 metallothionein genes are involved in regulating Zn ion accumulation in late embryo and in controlling early seedling growth in Arabidopsis. Plant Cell Environ 35(4):770–789PubMedCrossRefGoogle Scholar
  41. Robinson NJ, Wilson JR, Turner JS (1996) Expression of the type 2 metallothionein-like gene MT2 from ArabIdopsis thaliana in Zn(2+)-metallothionein-deficient Synechococcus PCC 7942: putative role for MT2 in Zn2+ metabolism. Plant Mol Biol 30(6):1169–1179PubMedCrossRefGoogle Scholar
  42. Rosa M, Prado C, Podazza G, Interdonato R, Gonzalez JA, Hilal M, Prado FE (2009) Soluble sugars–metabolism, sensing and abiotic stress: a complex network in the life of plants. Plant Signal Behav 4(5):388–393PubMedPubMedCentralCrossRefGoogle Scholar
  43. Ruttkay-Nedecky B, Nejdl L, Gumulec J, Zitka O, Masarik M, Eckschlager T, Stiborova M, Adam V, Kizek R (2013) The role of metallothionein in oxidative stress. Int J Mol Sci 14(3):6044–6066PubMedPubMedCentralCrossRefGoogle Scholar
  44. Sassmann S, Wernitznig S, Lichtscheidl IK, Lang I (2010) Comparing copper resistance in two bryophytes: Mielichhoferia elongata Hornsch. versus Physcomitrella patens Hedw. Protoplasma 246(1–4):119–123PubMedCrossRefGoogle Scholar
  45. Schiller M, Hegelund JN, Pedas P, Kichey T, Laursen KH, Husted S, Schjoerring JK (2014) Barley metallothioneins differ in ontogenetic pattern and response to metals. Plant Cell Environ 37(2):353–367PubMedCrossRefGoogle Scholar
  46. Sekhar K, Priyanka B, Reddy VD, Rao KV (2011) Metallothionein 1 (CcMT1) of pigeonpea (Cajanus cajan, L.) confers enhanced tolerance to copper and cadmium in Escherichia coli and ArabIdopsis thaliana Environ Exp Bot 72(2):131–139CrossRefGoogle Scholar
  47. Sereno ML, Almeida RS, Nishimura DS, Figueira A (2007) Response of sugarcane to increasing concentrations of copper and cadmium and expression of metallothionein genes. J Plant Physiol 164(11):1499–1515PubMedCrossRefGoogle Scholar
  48. Singh S, Singh A, Bashri G, Prasad SM (2016) Impact of Cd stress on cellular functioning and its amelioration by phytohormones: an overview on regulatory network. Plant Growth Regul 80(3):253–263CrossRefGoogle Scholar
  49. Sun H, Wang S, Chen Y (2009) Effects of salt stress on growth and physiological index of 6 tree species. For Res Beijing 22(3):315–324Google Scholar
  50. Szabados L, Savouré A (2010) Proline: a multifunctional amino acid. Trends Plant Sci 15(2):89–97PubMedCrossRefGoogle Scholar
  51. Whitelaw CA, Le Huquet JA, Thurman DA, Tomsett AB (1997) The isolation and characterisation of type II metallothionein-like genes from tomato (Lycopersicon esculentum L). Plant Mol Biol 33(3):503–511PubMedCrossRefGoogle Scholar
  52. Xu L, Wang Y, Liu W, Wang J, Zhu X, Zhang K, Yu R, Wang R, Xie Y, Zhang W, Gong Y, Liu L (2015) De novo sequencing of root transcriptome reveals complex cadmium-responsive regulatory networks in radish (Raphanus sativus L.). Plant Sci 236:313–323PubMedCrossRefGoogle Scholar
  53. Xue T, Li X, Zhu W, Wu C, Yang G, Zheng C (2009) Cotton metallothionein GhMT3a, a reactive oxygen species scavenger, increased tolerance against abiotic stress in transgenic tobacco and yeast. J Exp Bot 60(1):339–349PubMedCrossRefGoogle Scholar
  54. Yang J, Wang Y, Liu G, Yang C, Li C (2011) Tamarix hispida metallothionein-like ThMT3, a reactive oxygen species scavenger, increases tolerance against Cd(2+), Zn(2+), Cu(2+), and NaCl in transgenic yeast. Mol Biol Rep 38(3):1567–1574PubMedCrossRefGoogle Scholar
  55. Yang S, Hao D, Cong Y, Jin M, Su Y (2015) The rice OsAMT1;1 is a proton-independent feedback regulated ammonium transporter. Plant Cell Rep 34(2):321–330PubMedCrossRefGoogle Scholar
  56. Yang Z, Wu Y, Li Y, Ling HQ, Chu C (2009) OsMT1a, a type 1 metallothionein, plays the pivotal role in zinc homeostasis and drought tolerance in rice. Plant Mol Biol 70(1–2):219–229PubMedCrossRefGoogle Scholar
  57. Yookongkaew MRB, Meetam N, Guo M, Punyasuk WJ, AbuQamar N, Goldsbrough S P (2014) Metallothionein deficiency impacts copper accumulation and redistribution in leaves and seeds of Arabidopsis. New Phytol 202(3):940–951PubMedCrossRefGoogle Scholar
  58. Zhang J, Zhang M, Tian S, Lu L, Shohag MJ, Yang X (2014) Metallothionein 2 (SaMT2) from Sedum alfredii Hance confers increased Cd tolerance and accumulation in yeast and tobacco. PLoS ONE 9(7):e102750PubMedPubMedCentralCrossRefGoogle Scholar
  59. Zhang L, Tian LH, Zhao JF, Song Y, Zhang CJ, Guo Y (2009) Identification of an apoplastic protein involved in the initial phase of salt stress response in rice root by two-dimensional electrophoresis. Plant Physiol 149(2):916–928PubMedPubMedCentralCrossRefGoogle Scholar
  60. Zhigang A, Cuijie L, Yuangang Z, Yejie D, Wachter A, Gromes R, Rausch T (2006) Expression of BjMT2, a metallothionein 2 from Brassica juncea, increases copper and cadmium tolerance in Escherichia coli and ArabIdopsis thaliana, but inhibits root elongation in ArabIdopsis thaliana seedlings. J Exp Bot 57(14):3575–3582PubMedCrossRefGoogle Scholar
  61. Zhou J, Goldsbrough PB (1995) Structure, organization and expression of the metallothionein gene family in Arabidopsis. Mol Gen Genet 248(3):318–328PubMedCrossRefGoogle Scholar
  62. Ziller A, Fraissinet-Tachet L (2018) Metallothionein diversity and distribution in the tree of life: a multifunctional protein. Metallomics 10(11):1549–1559PubMedCrossRefGoogle Scholar

Copyright information

© Springer Nature B.V. 2019

Authors and Affiliations

  • Yue Liu
    • 1
    • 4
    Email author
  • Tao Kang
    • 2
    • 4
  • Jie-shan Cheng
    • 2
    • 4
  • Yan-jun Yi
    • 3
  • Jun-jie Han
    • 5
  • Hai-long Cheng
    • 3
  • Qi Li
    • 3
  • Na Tang
    • 3
  • Mei-xia Liang
    • 2
    • 4
    Email author
  1. 1.College of Life SciencesQingdao UniversityQingdaoChina
  2. 2.College of AgricultureLudong UniversityYantaiChina
  3. 3.College of Life SciencesQingdao Agricultural UniversityQingdaoChina
  4. 4.Key Laboratory of Molecular Module-Based Breeding of High Yield and Abiotic ResistantPlants in Universities of Shandong (Ludong University)YantaiChina
  5. 5.Yantai Academy of Agricultural SciencesYantaiChina

Personalised recommendations