Skip to main content
Log in

Ιntra-species grafting induces epigenetic and metabolic changes accompanied by alterations in fruit size and shape of Cucurbita pepo L.

  • Original paper
  • Published:
Plant Growth Regulation Aims and scope Submit manuscript

Abstract

To further understand the impact of grafting on fruit characteristics and to comprehend the mechanisms involved in graft-induced changes we studied homo- and hetero- grafted Cucurbita pepo cultivars (cv.) that vary in fruit size and shape. C. pepo cv. ‘Munchkin’ and cv. ‘Big Moose’ as well as cv. ‘Round green’ and cv. ‘Princess’ were homo-grafted and reciprocally hetero-grafted. The results show significant changes in fruit size when ‘Big Moose’ was grafted onto ‘Munchkin’ rootstocks in comparison to homo-grafted controls. Statistically significant changes were also observed in fruit shape when cv. ‘Princess’ was grafted on cv. ‘Round green’. This is the first report of such phenotypic changes after intra-species/inter-cultivar grafting in Cucurbitaceae. Additionally, we found significant changes in (i) secondary metabolite profile, (ii) global DNA methylation pattern and (iii) miRNA expression patterns in grafted scions and (iv) DNA methylation on graft-induced phenotypic changes in grafted plants. Our results contribute to further understanding graft-induced effects on fruit morphology in intra-species grafting. Furthermore, our results pave the way for understanding the role of phenolic metabolites and epigenetic molecular mechanisms on the phenotypic changes recorded.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Achard P, Herr A, Baulcombe DC, Harberd NP (2004) Modulation of floral development by a gibberellin-regulated microRNA. Development 131(14):3357–3365

    Article  CAS  Google Scholar 

  • Aida M, Tasaka M (2006) Genetic control of shoot organ boundaries. Curr Opin Plant Biol 9(1):72–77

    Article  CAS  Google Scholar 

  • Albacete A, Martinez-Anddujar C, Martinez-Perez A, Thompson AJ, Dodd IC, Perez-Alfocea F (2015) Unravelling rootstock—scion interactions to improve food security. J Exp Bot. https://doi.org/10.1093/jxb/erv027

    Article  PubMed  PubMed Central  Google Scholar 

  • Avramidou E, Kapazoglou A, Aravanopoulos FA, Xanthopoulou A, Ganopoulos I, Tsaballa A, Madesis P, Doulis AG, Tsaftaris A (2014) Global DNA methylation changes in Cucurbitaceae inter-species grafting. Crop Breed Appl Biotechnol 15(2):112–116

    Article  Google Scholar 

  • Baker CC, Sieber P, Wellmer F, Meyerowitz EM (2005) The early extra petals1 mutant uncovers a role for microRNA miR164c in regulating petal number in Arabidopsis. Curr Biol 15(4):303–315

    Article  CAS  Google Scholar 

  • Barrera-Figueroa BE, Wu Z, Liu R (2013) Abiotic stress-associated microRNAs in plants: discovery, expression analysis, and evolution. Front Biol 8(2):189–197

    Article  CAS  Google Scholar 

  • Birtić S, Dussort P, Pierre F-X, Bily AC, Roller M (2015) Carnosic acid. Phytochemistry 115:9–19

    Article  Google Scholar 

  • Boeing JS, Barizão ÉO, e Silva BC, Montanher PF, de Cinque Almeida V, Visentainer JV (2014) Evaluation of solvent effect on the extraction of phenolic compounds and antioxidant capacities from the berries: application of principal component analysis. Chem Cent J 8(1):1–9

    Article  Google Scholar 

  • Cheynier V, Comte G, Davies KM, Lattanzio V, Martens S (2013) Plant phenolics: recent advances on their biosynthesis, genetics, and ecophysiology. Plant Physiol Biochem 72:1–20

    Article  CAS  Google Scholar 

  • Cohen R, Burger Y, Horev C, Koren A, Edelstein M (2007) Introducing grafted cucurbits to modern agriculture: the Israeli experience. Plant Dis 91:916–923

    Article  Google Scholar 

  • Dong H, Lei J, Ding L, Wen Y, Ju H, Zhang X (2013) MicroRNA: function, detection, and bioanalysis. Chem Rev 113(8):6207–6233

    Article  CAS  Google Scholar 

  • Fujimoto R, Sasaki T, Ishikawa R, Osabe K, Kawanabe T, Dennis ES (2012) Molecular mechanisms of epigenetic variation in plants. Int J Mol Sci 13(8):9900–9922

    Article  CAS  Google Scholar 

  • Gisbert C, Prohens J, Raigón MD, Stommel JR, Nuez F (2011) Eggplant relatives as sources of variation for developing new rootstocks: effects of grafting on eggplant yield and fruit apparent quality and composition. Sci Hortic 128(1):14–22

    Article  Google Scholar 

  • Gisbert C, Prohens J, Nuez F (2012) Performance of eggplant grafted onto cultivated, wild, and hybrid materials of eggplant and tomato. Int J Plant Prod 5(4):367–380

    Google Scholar 

  • Goldschmidt EE (2014) Plant grafting: new mechanisms, evolutionary implications. Front Plant Sci 5:727

    Article  Google Scholar 

  • Haoa Y-J, Wen X-P, Deng X-X (2004) Genetic and epigenetic evaluations of citrus calluses recovered from slow-growth culture. J Plant Physiol 161(4):479–484

    Article  Google Scholar 

  • Haroldsen V, Szczerba MW, Aktas H, Lopez J, Odias MJ, Chi-Ham CL, Labavitch J, Bennett AB, Powell ALT (2012) Mobility of transgenic nucleic acids and proteins within grafted rootstocks for agricultural improvement. Front Plant Sci 3:39

    Article  Google Scholar 

  • Huang Y, Bie Z, Liu P, Niu M, Zhen A, Liu Z, Lei B, Gu D, Lu C, Wang B (2013) Reciprocal grafting between cucumber and pumpkin demonstrates the roles of the rootstock in the determination of cucumber salt tolerance and sodium accumulation. Sci Hortic 149(0):47–54. https://doi.org/10.1016/j.scienta.2012.04.018

    Article  Google Scholar 

  • Iswaldi I, Gómez-Caravaca AM, Lozano-Sánchez J, Arráez-Román D, Segura-Carretero A, Fernández-Gutiérrez A (2013) Profiling of phenolic and other polar compounds in zucchini (Cucurbita pepo L.) by reverse-phase high-performance liquid chromatography coupled to quadrupole time-of-flight mass spectrometry. Food Res Int 50(1):77–84

    Article  CAS  Google Scholar 

  • Kalantidis K, Schumacher HT, Alexiadis T, Helm JM (2008) RNA silencing movement in plants. Biol Cell 100(1):13–26

    Article  CAS  Google Scholar 

  • Katayama S, Ohno F, Yamauchi Y, Kato M, Makabe H, Nakamura S (2013) Enzymatic synthesis of novel phenol acid rutinosides using rutinase and their antiviral activity in vitro. J Agric Food Chem 61(40):9617–9622

    Article  CAS  Google Scholar 

  • Kehr J, Buhtz A (2008) Long distance transport and movement of RNA through the phloem. J Exp Bot 59(1):85–92

    Article  CAS  Google Scholar 

  • Krumbein A, Schwarz D (2013) Grafting: a possibility to enhance health-promoting and flavour compounds in tomato fruits of shaded plants? Sci Hortic 149:97–107

    Article  CAS  Google Scholar 

  • Kusumanjali K, Kumari G, Srivastava PS, Das S (2012) Sequence conservation and divergence in miR164C1 and its target, CUC1, in Brassica species. Plant Biotechnol Rep 6(2):149–163

    Article  Google Scholar 

  • Kyriacou MC, Soteriou GA, Rouphael Y, Siomos AS, Gerasopoulos D (2015) Configuration of watermelon fruit quality in response to rootstock-mediated harvest maturity and postharvest storage. J Sci Food Agric 96:2400–2409

    Google Scholar 

  • Lee J-M, Kubota C, Tsao SJ, Bie Z, Echevarria PH, Morra L, Oda M (2010) Current status of vegetable grafting: diffusion, grafting techniques, automation. Sci Hortic 127(2):93–105. https://doi.org/10.1016/j.scienta.2010.08.003

    Article  Google Scholar 

  • Li X, Bian H, Song D, Ma S, Han N, Wang J, Zhu M (2013) Flowering time control in ornamental gloxinia (Sinningia speciosa) by manipulation of miR159 expression. Ann Bot 111(5):791–799

    Article  CAS  Google Scholar 

  • Li S, Castillo-Gonzalez C, Yu B, Zhang X (2016) The functions of plant small RNAs in development and in stress responses. Plant J 90:654–670

    Google Scholar 

  • Lough TJ, Lucas WJ (2006) Integrative plant biology: role of phloem long-distance macromolecular trafficking. Annu Rev Plant Biol 57:203–232

    Article  CAS  Google Scholar 

  • Lucas WJ, Yoo B-C, Kragler F (2001) RNA as a long-distance information macromolecule in plants. Nat Rev Mol Cell Biol 2(11):849–857

    Article  CAS  Google Scholar 

  • Mallory AC, Dugas DV, Bartel DP, Bartel B (2004) MicroRNA regulation of NAC-domain targets is required for proper formation and separation of adjacent embryonic, vegetative, and floral organs. Curr Biol 14(12):1035–1046

    Article  CAS  Google Scholar 

  • Melnyk CW, Molnar A, Baulcombe DC (2011) Intercellular and systemic movement of RNA silencing signals. EMBO J 30(17):3553–3563

    Article  CAS  Google Scholar 

  • Mermigka G, Verret F, Kalantidis K (2015) RNA silencing movement in plants. J Integr Plant Biol 100:13–26

    Google Scholar 

  • Moncada A, Miceli A, Vetrano F, Mineo V, Planeta D, D’Anna F (2013) Effect of grafting on yield and quality of eggplant (Solanum melongena L.). Sci Hortic 149:108–114

    Article  Google Scholar 

  • Mudge K, Janick J, Scofield S, Goldschmidt EE (2009) A history of grafting. In: Horticultural reviews. Wiley, pp 437–493. https://doi.org/10.1002/9780470593776.ch9

  • Muñoz-Falcón JE, Prohens J, Rodríguez-Burruezo A, Nuez F (2008) Potential of local varieties and their hybrids for the improvement of eggplant production in the open field and greenhouse cultivation. J Food Agric Environ 6(1):83

    Google Scholar 

  • Nascimento PLA, Nascimento TCES, Ramos NSM, Silva GR, Gomes JEG, Falcão REA, Moreira KA, Porto ALF, Silva T (2014) Quantification, antioxidant and antimicrobial activity of phenolics isolated from different extracts of Capsicum frutescens (Pimenta Malagueta). Molecules 19(4):5434–5447

    Article  Google Scholar 

  • Nayak B, Liu RH, Tang J (2015) Effect of processing on phenolic antioxidants of fruits, vegetables, and grains—a review. Crit Rev Food Sci Nutr 55(7):887–918

    Article  CAS  Google Scholar 

  • Nicoletto C, Tosini F, Sambo P (2013) Effect of grafting on biochemical and nutritional traits of ‘Cuore di Bue’ tomatoes harvested at different ripening stages. Acta Agric Scand Sect B 63(2):114–122

    CAS  Google Scholar 

  • Obrero A, Die JV, Román B, Gómez P, Nadal S, González-Verdejo CI (2011) Selection of reference genes for gene expression studies in zucchini (Cucurbita pepo) using qPCR. J Agric Food Chem 59(10):5402–5411

    Article  CAS  Google Scholar 

  • Omid A, Keilin T, Glass A, Leshkowitz D, Wolf S (2007) Characterization of phloem-sap transcription profile in melon plants. J Exp Bot 58(13):3645–3656

    Article  CAS  Google Scholar 

  • Orsini F, Sanoubar R, Oztekin GB, Kappel N, Tepecik M, Quacquarelli C, Tuzel Y, Bona S, Gianquinto G (2013) Improved stomatal regulation and ion partitioning boosts salt tolerance in grafted melon. Funct Plant Biol 40(6):628–636. https://doi.org/10.1071/FP12350

    Article  CAS  Google Scholar 

  • Palauqui JC, Elmayan T, Pollien JM, Vaucheret H (1997) Systemic acquired silencing: transgene-specific post-transcriptional silencing is transmitted by grafting from silenced stocks to non-silenced scions. EMBO J 16(15):4738–4745

    Article  CAS  Google Scholar 

  • Passam HC, Stylianou M, Kotsiras A (2005) Performance of eggplant grafted on tomato and eggplant rootstocks. Eur J Hortic Sci 70:130–134

    Google Scholar 

  • Pfaffl MW, Horgan GW, Dempfle L (2002) Relative expression software tool (REST©) for group-wise comparison and statistical analysis of relative expression results in real-time PCR. Nucleic Acids Res 30(9):e36–e36

    Article  Google Scholar 

  • Rouphael Y, Cardarelli M, Bassal A, Leonardi C, Giuffrida F, Colla G (2012) Vegetable quality as affected by genetic, agronomic and environmental factors. J Food Agric Environ 10(3&4):680–688

    CAS  Google Scholar 

  • Sarrou E, Martens S, Chatzopoulou P (2016) Metabolite profiling and antioxidative activity of Sage (Salvia fruticosa Mill.) under the influence of genotype and harvesting period. Ind Crops Prod 94:240–250

    Article  CAS  Google Scholar 

  • Soteriou GA, Kyriacou MC, Siomos AS, Gerasopoulos D (2014) Evolution of watermelon fruit physicochemical and phytochemical composition during ripening as affected by grafting. Food Chem 165:282–289

    Article  CAS  Google Scholar 

  • Spiegelman Z, Golan G, Wolf S (2013) Don’t kill the messenger: long-distance trafficking of mRNA molecules. Plant Sci 213:1–8

    Article  CAS  Google Scholar 

  • Taller J, Yagishita N, Hirata Y (1999) Graft-induced variants as a source of novel characteristics in the breeding of pepper (Capsicum annuum L.). Euphytica 108(2):73–78

    Article  Google Scholar 

  • Tiwari U, Cummins E (2013) Factors influencing levels of phytochemicals in selected fruit and vegetables during pre-and post-harvest food processing operations. Food Res Int 50(2):497–506

    Article  CAS  Google Scholar 

  • Tsaballa A, Athanasiadis C, Pasentsis K, Ganopoulos I, Nianiou-Obeidat I, Tsaftaris A (2012) Molecular studies of inheritable grafting induced changes in pepper (Capsicum annuum) fruit shape. Sci Hortic 149(0):2–8. https://doi.org/10.1016/j.scienta.2012.06.018

    Article  CAS  Google Scholar 

  • Tsaftaris AS, Kapazoglou A, Darzentas N (2012) Epigenetics, epigenomics, and implications in plant breeding. In: A. Altman and P.M. Haegawa (eds.) Plant biotechnology and agriculture: prospects for the 21st century. Elsevier Press

  • Uthup TK, Karumamkandathil R, Ravindran M, Saha T (2018) Heterografting induced DNA methylation polymorphisms in Hevea brasiliensis. Planta 248(3):579–589. https://doi.org/10.1007/s00425-018-2918-6

    Article  CAS  PubMed  Google Scholar 

  • Valenzuela GM, Soro AS, Tauguinas AL, Gruszycki MR, Cravzov AL, Giménez MC, Wirth A (2014) Evaluation polyphenol content and antioxidant activity in extracts of Cucurbita spp. Open Access Libr J 1(03):1

    Google Scholar 

  • Varkonyi-Gasic E, Wu R, Wood M, Walton EF, Hellens RP (2007) Protocol: a highly sensitive RT-PCR method for detection and quantification of microRNAs. Plant Methods 3(1):12

    Article  Google Scholar 

  • Vekemans X, Beauwens T, Lemaire M, Roldán-Ruiz I (2002) Data from amplified fragment length polymorphism (AFLP) markers show indication of size homoplasy and of a relationship between degree of homoplasy and fragment size. Mol Ecol 11(1):139–151

    Article  CAS  Google Scholar 

  • Vos P, Hogers R, Bleeker M, Reijans M, Van de Lee T, Hornes M, Friters A, Pot J, Paleman J, Kuiper M (1995) AFLP: a new technique for DNA fingerprinting. Nucleic Acids Res 23(21):4407–4414

    Article  CAS  Google Scholar 

  • Vrhovsek U, Masuero D, Gasperotti M, Franceschi P, Caputi L, Viola R, Mattivi F (2012) A versatile targeted metabolomics method for the rapid quantification of multiple classes of phenolics in fruits and beverages. J Agric Food Chem 60(36):8831–8840

    Article  CAS  Google Scholar 

  • Wang L, Mai Y-X, Zhang Y-C, Luo Q, Yang H-Q (2010) MicroRNA171c-targeted SCL6-II, SCL6-III, and SCL6-IV genes regulate shoot branching in Arabidopsis. Mol Plant 3(5):794–806

    Article  Google Scholar 

  • Wu R, Wang X, Lin Y, Ma Y, Liu G, Yu X, Zhong S, Liu B (2013) Inter-species grafting caused extensive and heritable alterations of DNA methylation in Solanaceae plants. PLoS ONE 8(4):e61995

    Article  CAS  Google Scholar 

  • Xanthopoulou A, Ganopoulos I, Kalivas A, Nianiou-Obeidat I, Ralli P, Moysiadis T, Tsaftaris A, Madesis P (2015) Comparative analysis of genetic diversity in Greek Genebank collection of summer squash (Cucurbita pepo) landraces using start codon targeted (SCoT) polymorphism and ISSR markers. Aust J Crop Sci 9(1):14

    CAS  Google Scholar 

  • Yagishita N, Hirata Y (1987) Graft-induced change in fruit shape in Capsicum annuum LI genetic analysis by crossing. Euphytica 36(3):809–814

    Article  Google Scholar 

  • Zhang B (2015) MicroRNA: a new target for improving plant tolerance to abiotic stress. J Exp Bot 66(7):1749–1761

    Article  CAS  Google Scholar 

  • Zhong S, Fei Z, Chen Y-R, Zheng Y, Huang M, Vrebalov J, McQuinn R, Gapper N, Liu B, Xiang J, Shao Y, Giovannoni JJ (2013) Single-base resolution methylomes of tomato fruit development reveal epigenome modifications associated with ripening. Nat Biotech 31(2):154–159

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Irini Nianiou-Obeidat or Panagiotis Madesis.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xanthopoulou, A., Tsaballa, A., Ganopoulos, I. et al. Ιntra-species grafting induces epigenetic and metabolic changes accompanied by alterations in fruit size and shape of Cucurbita pepo L.. Plant Growth Regul 87, 93–108 (2019). https://doi.org/10.1007/s10725-018-0456-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10725-018-0456-7

Keywords

Navigation