Plant Growth Regulation

, Volume 84, Issue 2, pp 275–283 | Cite as

Role of ABA and Gibberellin A3 on gene expression pattern of sugar transporters and invertases in Vitis vinifera cv. Malbec during berry ripening

  • Germán Murcia
  • Mariela Pontin
  • Patricia Piccoli
Original paper


Sugars are key constituents that affect quality of grape berries, and consequently the grape metabolic profile relevant to wine’s industry. However, enzymes and transporter genes expression involved in sugar transport at different phenological stages are scarcely studied. In addition, little is known about the role of the plant hormones ABA and Gibberellin (GA3) as endogenous regulators, over the expression pattern of the sugars transporters genes in grapevine. The aim of this study was to analyze the expression pattern of the most relevant sugar transporters and invertases in leaves and berries of grapevine plants cv. Malbec during berry ripening stages and its shift after ABA and GA3 sprays. In leaves, VvHT1 was the sugar transporter highly expressed, whereas VvHT6 was the most abundant in berries throughout berry ripening. Moreover, VvSUC12 and VvSUC27 were expressed at veraison greater in leaves than in berries, suggesting an active phloem loading at the onset of ripening. Applications of ABA and GA3 enhanced the expression of VvSUC12 and VvSUC27 in pre-veraison leaves. Furthermore, hormones increased the expression of VvHT2, VvHT3 and VvHT6 in berries at different stages of ripening favoring sugar unloading from phloem. In conclusion, ABA and GA3 are involved in the long-distance sugar transport from leaves to berries in Vitis vinifera L. cv. Malbec, and their exogenous application could be a suitable strategy to improve the process.


ABA GA3 Gene expression Invertases Malbec Sugar transporters Vitis vinifera 



This work was financially supported by Consejo Nacional de Investigaciones Científicas y Técnicas (PIP 2009 to Patricia Piccoli) and Fondo para la Investigación Científica y Tecnológica (PAE-PICT2007-02190 to Patricia Piccoli, PICT2008-1666).

Supplementary material

10725_2017_338_MOESM1_ESM.docx (449 kb)
Supplementary material 1 (DOCX 448 KB)
10725_2017_338_MOESM2_ESM.docx (16 kb)
Supplementary material 2 (DOCX 15 KB)


  1. Afoufa-Bastien D, Medici A, Jeauffre J, Coutos-Thévenot P, Lemoine R, Atanassova R, Laloi M (2010) The Vitis vinifera sugar transporter gene family: phylogenetic overview and macroarray expression profiling. BMC Plant Biol 10:245–271CrossRefPubMedPubMedCentralGoogle Scholar
  2. Ageorges A, Issaly N, Picaud S, Delrot S (2000) Characterization of an active sucrose transporter gene expressed during the ripening of grape berry (Vitis vinifera L.). Plant Physiol Biochem 38:177–185CrossRefGoogle Scholar
  3. Çakir B, Giachino R (2012) VvTMT2 encodes a putative tonoplast monosaccharide transporter expressed during grape berry (Vitis vinifera cv. Sultanine) ripening. Plant OMICS 5:576–583Google Scholar
  4. Çakir B, Agasse A, Gaillard C, Saumonneau A, Delrot S, Atanassova R (2003) A grape ASR protein involved in sugar and abscisic acid signalling. Plant Cell 15:2165–2180CrossRefPubMedPubMedCentralGoogle Scholar
  5. Conde C, Agasse A, Glissant D, Tavares RM, Gerós H, Delrot S (2006) Pathways of glucose regulation of monosaccharide transport in grape cells. Plant Physiol 141:1563–1577CrossRefPubMedPubMedCentralGoogle Scholar
  6. Conde C, da Silva P, Fontes N, Dias ACP, Tavares RM, Sousa MJ, Agasse A, Delrot S, Gerós H (2007) Biochemical changes throughout grape berry development and fruit and wine quality. Food 1:1–22Google Scholar
  7. Davies C, Robinson SP (1996) Sugar accumulation in grape berries. Cloning of two putative vacuolar invertase cDNAs and their expression in grapevine tissues. Plant Physiol 111:275–283CrossRefPubMedPubMedCentralGoogle Scholar
  8. Deluc LG, Grimplet J, Wheatley MD, Tillet RL, Quilici D, Osborne C, Schlauch KA, Schooley DA, Cushman JC, Cramer GR (2007) Transcriptomic and metabolite analyses of Cabernet Sauvignon grape berry development. BMC Genomics 8:429CrossRefPubMedPubMedCentralGoogle Scholar
  9. Dinant S, Lemoine R (2010) The phloem pathway: new issues and old debates. CR Biol 333:307–319CrossRefGoogle Scholar
  10. Fillion L, Ageorges A, Picaud S, Coutos-Thévenot P, Lemoine R, Romieu C, Delrot S (1999) Cloning and expression of a hexose transporter gene expressed during the ripening of grape berry. Plant Physiol 120:1083–1093CrossRefPubMedPubMedCentralGoogle Scholar
  11. Hayes M, Davies C, Dry I (2007) Isolation, functional characterization, and expression analysis of grapevine (Vitis vinifera L.) hexose transporters: differential roles in sink and source tissues. J Exp Bot 58:1985–1997CrossRefPubMedGoogle Scholar
  12. Hayes M, Feechan A, Dry I (2010) Involvement of abscisic acid in the coordinated regulation of a stress-inducible hexose transporter (VvHT5) and a cell wall invertase in grapevine in response to biotrophic fungal infection. Plant Physiol 153:211–221CrossRefPubMedPubMedCentralGoogle Scholar
  13. Jaillon O, Aury JM, Noel B, Policriti A, Clepet C, Casagrande A, Choisne N, Aubourg S, Vitulo N, Jubin C, Vezzi A, Legeai F, Hugueney P, Dasilva C, Horner D, Mica E, Jublot D, Poulain J, Bruyere C, Billault A, Segurens B, Gouyvenoux M, Ugarte E, Cattonaro F, Anthouard V, Vico V, Del Fabbro C, Alaux M, Di Gaspero G, Dumas V, Felice N, Paillard S, Juman I, Moroldo M, Scalabrin S, Canaguier A, Le Clainche I, Malacrida G, Durand E, Pesole G, Laucou V, Chatelet P, Merdinoglu D, Delledonne M, Pezzotti M, Lecharny A, Scarpelli C, Artiguenave F, Pe ME, Valle G, Morgante M, Caboche M, Adam-Blondon AF, Weissenbach J, Quetier F, Wincker P (2007) The grapevine genome sequence suggests ancestral hexaploidization in major angiosperm phyla. Nature 449:463–467CrossRefPubMedGoogle Scholar
  14. Keller M (2010) Partitioning of assimilates. In: Maragioglio N, Bolger C (eds) The science of grapevines: anatomy and physiology, 2nd edn. CA Elsevier Inc Publishers, San Diego, pp 125–167CrossRefGoogle Scholar
  15. Lecourieux F, Kappel C, Lecourieux D, Serrano A, Torres E, Arce-Johnson P, Delrot S (2014) An update on sugar transport and signaling in grapevine. J Exp Bot 65(3):821–832CrossRefPubMedGoogle Scholar
  16. Manning K, Davies C, Bowen H, White P (2001) Functional characterization of two ripening-related sucrose transporters from grape berries. Ann Bot 87:125–129CrossRefGoogle Scholar
  17. Medici A, Laloi M, Atanassova R (2014) Profiling of sugar transporter genes in grapevine coping with water deficit. FEBS Lett 588:3889–3897CrossRefGoogle Scholar
  18. Moreno D, Berli F, Piccoli P, Bottini R (2011) Gibberellins and abscisic acid promote carbon allocation in roots and berries of grapevines. J Plant Growth Regul 30:220–228CrossRefGoogle Scholar
  19. Murcia G, Pontin M, Reinoso H, Baraldi R, Bertazza G, Gómez-Talquenca S, Bottini R, Piccoli PN (2016) ABA and GA3 increase carbon allocation in different organs of grapevine plants by inducing accumulation of non-structural carbohydrates in leaves, enhancement of phloem area and expression of sugar transporters. Physiol Plant 156(3):323–337CrossRefPubMedGoogle Scholar
  20. Murcia G, Fontana A, Pontin M, Baraldi R, Bertazza G, Piccoli PN (2017) ABA and GA3 regulate the synthesis of primary and secondary metabolites related to alleviation from biotic and abiotic stresses in grapevine. Phytochemistry 135:34–52CrossRefPubMedGoogle Scholar
  21. Pastenes C, Villalobos L, Ríos N, Reyes F, Turgeon R, Franck N (2014) Carbon partitioning to berries in water stressed grapevines: the role of active transport in leaves and fruits. Environ Exp Bot 107:154–166CrossRefGoogle Scholar
  22. Reid K, Olsson N, Schlosser J, Peng F, Lund S (2006) An optimized grapevine RNA isolation procedure and statistical determination of reference genes for real-time RT-PCR during berry development. BMC Plant Biol 6:27–37CrossRefPubMedPubMedCentralGoogle Scholar
  23. Sarry JE, Sommerer N, Sauvage FX, Bergoin A, Rossignol M, Albagnac G, Romieu C (2004) Grape berry biochemistry revisited upon proteomic analysis of the mesocarp. Proteomics 4:201–215CrossRefPubMedGoogle Scholar
  24. Slewinski TL, Zhang C, Turgeon R (2013) Structural and functional heterogeneity in phloem loading and transport. Front Plant Sci 4:244PubMedPubMedCentralGoogle Scholar
  25. Terrier N, Glissant D, Grimplet J, Barrieu F, Abbal P, Couture C, Ageorges A, Atanassova R, Leon C, Renaudin JP, Dedaldechamp F, Romieu C, Delrot S, Hamdi S (2005) Isogene specific oligo arrays reveal multifaceted changes in gene expression during grape berry (Vitis vinifera L.) development. Planta 222:832–847CrossRefPubMedGoogle Scholar
  26. Velasco R, Zharkikh A, Troggio M, Cartwright DA, Cestaro A, Pruss D, Pindo M, Fitzgerald LM, Vezzulli S, Reid J, Malacarne G, Iliev D, Coppola G, Wardell B, Micheletti D, Macalma T, Facci M, Mitchell JT, Perazzolli M, Eldredge G, Gatto P, Oyzerski R, Moretto M, Gutin N, Stefanini M, Chen Y, Segala C, Davenport C, Dematte L, Mraz A, Battilana J, Stormo K, Costa F, Tao Q, Si-Ammour A, Harkins T, Lackey A, Perbost C, Taillon B, Stella A, Solovyev V, Fawcett JA, Sterck L, Vandepoele K, Grando SM, Toppo S, Moser C, Lanchbury J, Bogden R, Skolnick M, Sgaramella V, Bhatnagar SK, Fontana P, Gutin A, Van de Peer Y, Salamini F, Viola R (2007) A high quality draft consensus sequence of the genome of a heterozygous grapevine variety. PLoS ONE 2:e1326CrossRefPubMedPubMedCentralGoogle Scholar
  27. Vignault C, Vachaud M, Çakir B, Glissant D, Dédaldechamp F, Büttner M, Atanassova R, Fleurat-Lessard P, Lemoine R, Delrot S (2005) VvHT1 encodes a monosaccharide transporter expressed in the conducting complex of the grape berry phloem. J Exp Bot 56:1409–1418CrossRefPubMedGoogle Scholar
  28. Xu F, Xi Z-M, Zhang H, Zhang C-J, Zhang Z-W (2015) Brassinosteroids are involved in controlling sugar unloading in Vitis vinifera ‘Cabernet Sauvignon’ berries during véraison. Plant Physiol Biochem 94:197–208CrossRefPubMedGoogle Scholar
  29. Zhang X, Wang X, Wang X, Xia GH, Pan QH, Fan RC, Wu F, Yu X, Zhang D (2006) A shift of phloem unloading from symplasmic to apoplasmic pathway is involved in developmental onset of ripening in grape berry. Plant Physiol 142:220–232CrossRefPubMedPubMedCentralGoogle Scholar
  30. Zhang YL, Meng QY, Zhu HL, Guo Y, Gao HY, Luo YB, Lu J (2008) Functional characterization of a LAHC sucrose transporter isolated from grape berries in yeast. Plant Growth Regul 54:71–79CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2017

Authors and Affiliations

  • Germán Murcia
    • 1
  • Mariela Pontin
    • 1
    • 2
  • Patricia Piccoli
    • 1
  1. 1.Instituto de Biología Agrícola de Mendoza, Facultad de Ciencias AgrariasCONICET-UNCuyoChacras de CoriaArgentina
  2. 2.EEA La Consulta-INTA, CC8La ConsultaArgentina

Personalised recommendations