Plant Growth Regulation

, Volume 84, Issue 1, pp 95–105 | Cite as

Genome-wide analysis of maize NLP transcription factor family revealed the roles in nitrogen response

  • Min Ge
  • Yuhe Liu
  • Lu Jiang
  • Yuancong Wang
  • Yuanda Lv
  • Ling Zhou
  • Shuaiqiang Liang
  • Huabin Bao
  • Han Zhao
Original paper


NIN-LIKE PROTEIN (NLP) is a conserved plant-specific transcription factor family and has been shown in several plant species to be a key player in regulating nitrogen (N) response. However, little is known about NLP gene family and their characteristics in maize (Zea mays L.). Here we report the identification and characterization of maize NLPs (ZmNLPs), and illustrate the family structure, phylogenetic properties, expression profiles, genetic differentiation between heterotic groups and N response. A total of 9 ZmNLPs from the maize genome were identified, belonging to two subgroups according to conserved domains and gene structure. Their expression profiles were different across tissues and almost all ZmNLPs constitutively expressed in eight different tissues at various developmental stages. Three ZmNLPs (ZmNLP3, 5 and 9) implementing the F ST higher than 0.25, differentiated very greatly between the Iowa Stiff Stalk Synthetic (SS) and Non-Stiff Stalk (NSS) heterotic groups. Quantitative real-time PCR (qPCR) results showed the expression levels of four ZmNLPs (ZmNLP4, 5, 6 and 8) were up-regulated over twofold in response to N treatment, ZmNLP4 and ZmNLP5 showed the largest up-regulation of greater than fivefold at 0.5 h after treatment which was even higher than the benchmark N-responsive gene (ZmNRT2.2) at the same time point, suggesting that they can be involved in the primary nitrogen response. As the first effort aimed to identify and characterize NLP transcription factor gene family in maize, our study also indicates ZmNLPs may have significant roles in maize N response.


Maize NIN-like protein (NLP) Transcription factor Genome-wide analysis Genetic differentiation Nitrogen response 



We sincerely thank editorial reviewers for valuable comments that helped improve the quality of this manuscript. This work was supported by grant from the National Natural Science Foundation of China (No. 31401394) and Jiangsu Agriculture Science and Technology Innovation Fund [CX(14)2009].

Supplementary material

10725_2017_324_MOESM1_ESM.xlsx (24 kb)
Supplementary material 1 (XLSX 24 KB)
10725_2017_324_MOESM2_ESM.xlsx (11 kb)
Supplementary material 2 (XLSX 10 KB)
10725_2017_324_MOESM3_ESM.xlsx (11 kb)
Supplementary material 3 (XLSX 11 KB)
10725_2017_324_MOESM4_ESM.xlsx (11 kb)
Supplementary material 4 (XLSX 11 KB)
10725_2017_324_MOESM5_ESM.xlsx (11 kb)
Supplementary material 5 (XLSX 11 KB)


  1. Bailey TL, Boden M, Buske FA, Frith M, Grant CE, Clementi L, Ren J, Li WW, Noble WS (2009) MEME SUITE: tools for motif discovery and searching. Nucleic Acids Res 37:W202-8CrossRefPubMedGoogle Scholar
  2. Bi YM, Meyer A, Downs GS, Shi X, El-Kereamy A, Lukens L, Rothstein SJ (2014) High throughput RNA sequencing of a hybrid maize and its parents shows different mechanisms responsive to nitrogen limitation. BMC Genomics 15:77CrossRefPubMedPubMedCentralGoogle Scholar
  3. Castaings L, Camargo A, Pocholle D, Gaudon V, Texier Y, Boutet-Mercey S, Taconnat L, Renou JP, Daniel-Vedele F, Fernandez E, Meyer C, Krapp A (2009) The nodule inception-like protein 7 modulates nitrate sensing and metabolism in Arabidopsis. Plant J 57(3):426–435CrossRefPubMedGoogle Scholar
  4. Chardin C, Girin T, Roudier F, Meyer C, Krapp A (2014) The plant RWP-RK transcription factors: key regulators of nitrogen responses and of gametophyte development. J Exp Bot 65(19):5577–5587CrossRefPubMedGoogle Scholar
  5. Cox MP, Peterson DA, Biggs PJ (2010) SolexaQA: at-a-glance quality assessment of Illumina second-generation sequencing data. BMC Bioinformatics 11(1):485CrossRefPubMedPubMedCentralGoogle Scholar
  6. Crooks GE, Hon G, Chandonia JM, Brenner SE (2004) WebLogo: a sequence logo generator. Genome Res 14(6):1188–1190CrossRefPubMedPubMedCentralGoogle Scholar
  7. Finn RD, Bateman A, Clements J, Coggill P, Eberhardt RY, Eddy SR, Heger A, Hetherington K, Holm L, Mistry J, Sonnhammer EL, Tate J, Punta M (2014) Pfam: the protein families database. Nucleic Acids Res 42:D222-230Google Scholar
  8. Guan P, Ripoll JJ, Wang R, Vuong L, Bailey-Steinitz LJ, Ye D, Crawford NM (2017) Interacting TCP and NLP transcription factors control plant responses to nitrate availability. Proc Natl Acad Sci USA 114(9):2419–2424CrossRefPubMedPubMedCentralGoogle Scholar
  9. Guo M, Rupe MA, Wei J, Winkler C, Goncalves-Butruille M, Weers BP, Cerwick SF, Dieter JA, Duncan KE, Howard RJ, Hou Z, Loffler CM, Cooper M, Simmons CR (2014) Maize ARGOS1 (ZAR1) transgenic alleles increase hybrid maize yield. J Exp Bot 65(1):249–260CrossRefPubMedGoogle Scholar
  10. Ho YS, Burden LM, Hurley JH (2000) Structure of the GAF domain, a ubiquitous signaling motif and a new class of cyclic GMP receptor. EMBO J 19(20):5288–5299CrossRefPubMedPubMedCentralGoogle Scholar
  11. Hu B, Jin J, Guo AY, Zhang H, Luo J, Gao G (2015) GSDS 2.0: an upgraded gene feature visualization server. Bioinformatics 31(8):1296–1297CrossRefPubMedGoogle Scholar
  12. Humbert S, Subedi S, Cohn J, Zeng B, Bi YM, Chen X, Zhu T, McNicholas PD, Rothstein SJ (2013) Genome-wide expression profiling of maize in response to individual and combined water and nitrogen stresses. BMC Genomics 14:3CrossRefPubMedPubMedCentralGoogle Scholar
  13. Jian W, Zhang D, Zhu F, Wang S, Zhu T, Pu X, Zheng T, Feng H, Lin H (2015) Nitrate reductase-dependent nitric oxide production is required for regulation alternative oxidase pathway involved in the resistance to Cucumber mosaic virus infection in Arabidopsis. Plant Growth Regul 77(1):99–107CrossRefGoogle Scholar
  14. Konishi M, Yanagisawa S (2011) The regulatory region controlling the nitrate-responsive expression of a nitrate reductase gene, NIA1, in Arabidopsis. Plant Cell Physiol 52(5):824–836CrossRefPubMedGoogle Scholar
  15. Konishi M, Yanagisawa S (2013) Arabidopsis NIN-like transcription factors have a central role in nitrate signalling. Nat Commun 4:1617CrossRefPubMedGoogle Scholar
  16. Krouk G, Mirowski P, LeCun Y, Shasha DE, Coruzzi GM (2010) Predictive network modeling of the high-resolution dynamic plant transcriptome in response to nitrate. Genome Biol 11(12):R123CrossRefPubMedPubMedCentralGoogle Scholar
  17. Lin F, Jiang L, Liu Y, Lv Y, Dai H, Zhao H (2014) Genome-wide identification of housekeeping genes in maize. Plant Mol Biol 86(4–5):543–554CrossRefPubMedGoogle Scholar
  18. Liu KH, Niu Y, Konishi M, Wu Y, Du H, Sun Chung H, Li L, Boudsocq M, McCormack M, Maekawa S, Ishida T, Zhang C, Shokat K, Yanagisawa S, Sheen J (2017) Discovery of nitrate-CPK-NLP signalling in central nutrient-growth networks. Nature 545(7654):311–316CrossRefPubMedGoogle Scholar
  19. Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method. Methods 25(4):402–408CrossRefPubMedGoogle Scholar
  20. Marchive C, Roudier F, Castaings L, Brehaut V, Blondet E, Colot V, Meyer C, Krapp A (2013) Nuclear retention of the transcription factor NLP7 orchestrates the early response to nitrate in plants. Nat Commun 4:1713CrossRefPubMedGoogle Scholar
  21. Romay MC, Millard MJ, Glaubitz JC, Peiffer JA, Swarts KL, Casstevens TM, Elshire RJ, Acharya CB, Mitchell SE, Flint-Garcia SA, McMullen MD, Holland JB, Buckler ES, Gardner CA (2013) Comprehensive genotyping of the USA national maize inbred seed bank. Genome Biol 14(6):R55CrossRefPubMedPubMedCentralGoogle Scholar
  22. Schauser L, Roussis A, Stiller J, Stougaard J (1999) A plant regulator controlling development of symbiotic root nodules. Nature 402(6758):191–195CrossRefPubMedGoogle Scholar
  23. Schauser L, Wieloch W, Stougaard J (2005) Evolution of NIN-like proteins in Arabidopsis, rice, and Lotus japonicus. J Mol Evol 60(2):229–237CrossRefPubMedGoogle Scholar
  24. Scheible WR, Morcuende R, Czechowski T, Fritz C, Osuna D, Palacios-Rojas N, Schindelasch D, Thimm O, Udvardi MK, Stitt M (2004) Genome-wide reprogramming of primary and secondary metabolism, protein synthesis, cellular growth processes, and the regulatory infrastructure of Arabidopsis in response to nitrogen. Plant Physiol 136(1):2483–2499CrossRefPubMedPubMedCentralGoogle Scholar
  25. Simons M, Saha R, Guillard L, Clement G, Armengaud P, Canas R, Maranas CD, Lea PJ, Hirel B (2014) Nitrogen-use efficiency in maize (Zea mays L.): from ‘omics’ studies to metabolic modelling. J Exp Bot 65(19):5657–5671CrossRefPubMedGoogle Scholar
  26. Sumimoto H, Kamakura S, Ito T (2007) Structure and function of the PB1 domain, a protein interaction module conserved in animals, fungi, amoebas, and plants. Sci STKE 2007(401):re6CrossRefPubMedGoogle Scholar
  27. Suzuki W, Konishi M, Yanagisawa S (2013) The evolutionary events necessary for the emergence of symbiotic nitrogen fixation in legumes may involve a loss of nitrate responsiveness of the NIN transcription factor. Plant Signal Behav 8(10):e25975CrossRefPubMedPubMedCentralGoogle Scholar
  28. Tamura K, Dudley J, Nei M, Kumar S (2007) MEGA4: molecular evolutionary genetics analysis (MEGA) software version 4.0. Mol Biol Evol 24(8):1596–1599CrossRefPubMedGoogle Scholar
  29. Thompson JD, Gibson TJ, Plewniak F, Jeanmougin F, Higgins DG (1997) The CLUSTAL_X windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res 25(24):4876–4882CrossRefPubMedPubMedCentralGoogle Scholar
  30. Trapnell C, Williams BA, Pertea G, Mortazavi A, Kwan G, van Baren MJ, Salzberg SL, Wold BJ, Pachter L (2010) Transcript assembly and quantification by RNA-Seq reveals unannotated transcripts and isoform switching during cell differentiation. Nat Biotechnol 28(5):511–515CrossRefPubMedPubMedCentralGoogle Scholar
  31. Trapnell C, Hendrickson DG, Sauvageau M, Goff L, Rinn JL, Pachter L (2013) Differential analysis of gene regulation at transcript resolution with RNA-sEq. Nat Biotechnol 31(1):46–53CrossRefPubMedGoogle Scholar
  32. van Heerwaarden J, Hufford MB, Ross-Ibarra J (2012) Historical genomics of North American maize. Proc Natl Acad Sci USA 109(31):12420–12425CrossRefPubMedPubMedCentralGoogle Scholar
  33. Wang R, Okamoto M, Xing X, Crawford NM (2003) Microarray analysis of the nitrate response in Arabidopsis roots and shoots reveals over 1000 rapidly responding genes and new linkages to glucose, trehalose-6-phosphate, iron, and sulfate metabolism. Plant Physiol 132(2):556–567CrossRefPubMedPubMedCentralGoogle Scholar
  34. Wang Y, Liu H, Wang S, Li H (2017) Genome-wide identification and expression analysis of the YUCCA gene family in soybean (Glycine max L.). Plant Growth Regul 81(2):265–275CrossRefGoogle Scholar
  35. Wright S (1977) Evolution and the genetics of populations. Variability within and among natural populations, vol 3. University of Chicago Press, Chicago, ILGoogle Scholar
  36. Xie W, Wang G, Yuan M, Yao W, Lyu K, Zhao H, Yang M, Li P, Zhang X, Yuan J, Wang Q, Liu F, Dong H, Zhang L, Li X, Meng X, Zhang W, Xiong L, He Y, Wang S, Yu S, Xu C, Luo J, Li X, Xiao J, Lian X, Zhang Q (2015) Breeding signatures of rice improvement revealed by a genomic variation map from a large germplasm collection. Proc Natl Acad Sci USA 112(39):E5411-5419CrossRefGoogle Scholar
  37. Yan D, Easwaran V, Chau V, Okamoto M, Ierullo M, Kimura M, Endo A, Yano R, Pasha A, Gong Y, Bi YM, Provart N, Guttman D, Krapp A, Rothstein SJ, Nambara E (2016) NIN-like protein 8 is a master regulator of nitrate-promoted seed germination in Arabidopsis. Nat Commun 7:13179CrossRefPubMedPubMedCentralGoogle Scholar
  38. Zamboni A, Astolfi S, Zuchi S, Pii Y, Guardini K, Tononi P, Varanini Z (2014) Nitrate induction triggers different transcriptional changes in a high and a low nitrogen use efficiency maize inbred line. J Integr Plant Biol 56(11):1080–1094CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2017

Authors and Affiliations

  • Min Ge
    • 1
  • Yuhe Liu
    • 2
  • Lu Jiang
    • 1
  • Yuancong Wang
    • 1
  • Yuanda Lv
    • 1
  • Ling Zhou
    • 1
  • Shuaiqiang Liang
    • 1
  • Huabin Bao
    • 1
  • Han Zhao
    • 1
  1. 1.Institute of Crop Germplasm and Biotechnology, Provincial Key Laboratory of AgrobiologyJiangsu Academy of Agricultural SciencesNanjingChina
  2. 2.Department of Crop SciencesUniversity of Illinois, UrbanaChampaignUSA

Personalised recommendations