Plant Growth Regulation

, Volume 83, Issue 2, pp 207–222 | Cite as

Genetic engineering approaches to enhance oil content in oilseed crops

  • Siddanna SavadiEmail author
  • Nemappa Lambani
  • Prem Lal Kashyap
  • Deepak Singh Bisht
Original paper


Oilseed crops play an important role in the agricultural economy. Apart from being an integral component of human diet and industrial applications, they are also gaining importance as replacement to fossil fuels for meeting the energy needs. The last two decades have been marked by several important events in genetic engineering and identification of gene targets for enhancing seed oil content in oilseed crops, and will aid the successful development of new generation high yielding oil crops. Specifically, genetic engineering has shown real breakthrough in enhancing oil content in oilseed rape, camelina, soybean and maize. Moreover, ongoing research efforts to decipher the possibilities of genetic modifications of key regulators of oil accumulation along with physiological and biochemical studies to understand lipid biosynthesis will set a platform to produce transgenic oilseed crops with enhanced oil content. In this review, we briefly describe different genetic engineering approaches explored by different researchers for enhancing oil content. Further, we discuss a few promising and potential approaches and challenges for engineering oil content in oilseed crops.


Oil content Oilseed Pathway Transgenics TAG 



We acknowledge Dr. S. R. Bhat, ICAR-NRCPB, New Delhi, for useful discussion on the topic and Indian Council of Agricultural Research for the financial assistance.


The funding was provided by Indian Council of Agricultural Research (ICAR).

Compliance with ethical standards

Conflict of interest

The authors have no conflict of interest.

Supplementary material

10725_2016_236_MOESM1_ESM.doc (180 kb)
Supplementary material 1 (DOC 179 KB)
10725_2016_236_MOESM2_ESM.docx (27 kb)
Supplementary material 2 (DOCX 26 KB)


  1. Adamski NM, Anastasiou E, Eriksson S, O′Neill CM, Lenhard M (2009) Local maternal control of seed size by KLUH/CYP78A5-dependent growth signaling. Proc Nat Acad Sci USA 106:20115–20120PubMedPubMedCentralCrossRefGoogle Scholar
  2. Andre C, Froehlich JE, Moll MR, Benning C (2007) A heteromeric plastidic pyruvate kinase complex involved in seed oil biosynthesis in Arabidopsis. Plant Cell 19:2006–2022PubMedPubMedCentralCrossRefGoogle Scholar
  3. Andrianov V, Borisjuk N, Pogrebnyak N, Brinker A, Dixon J, Spitsin S, Flynn J, Matyszczuk P et al (2010) Tobacco as a production platform for biofuel: overexpression of Arabidopsis DGAT and LEC2 genes increases accumulation and shifts the composition of lipids in green biomass. Plant Biotechnol J 8:277–287PubMedCrossRefGoogle Scholar
  4. Angeles-Núñez JG, Tiessen A (2011) Mutation of the transcription factor LEAFY COTYLEDON 2 alters the chemical composition of Arabidopsis seeds, decreasing oil and protein content, while maintaining high levels of starch and sucrose in mature seeds. J Plant Physiol 168:1891–1900PubMedCrossRefGoogle Scholar
  5. Bao X, Ohlrogge JB (1999) Supply of FA is one limiting factor in the accumulation of triacylglycerol in developing embryos. Plant Physiol 120:1057–1062PubMedPubMedCentralCrossRefGoogle Scholar
  6. Baud S, Lepiniec L (2010) Physiological and developmental regulation of seed oil production. Prog Lipid Res 49:235–249PubMedCrossRefGoogle Scholar
  7. Baud S, Wuilleme S, Dubreucq B, De Almeida A, Vuagnat C, Lepiniec L et al (2007) Function of plastidial pyruvate kinases in seeds of Arabidopsis thaliana. Plant J 52(3):405–419PubMedCrossRefGoogle Scholar
  8. Baud S, Dubreucq B, Miquel M, Rochat C, Lepiniec L (2008) Storage reserve accumulation in Arabidopsis: metabolic and developmental control of seed filling. Arabidopsis Book 6:e0113PubMedPubMedCentralCrossRefGoogle Scholar
  9. Baud S, Wuillème S, To A, Rochat C, Lepiniec L (2009) Role of WRINKLED1 in the transcriptional regulation of glycolytic and FA biosynthetic genes in Arabidopsis. Plant J 60:933–947PubMedCrossRefGoogle Scholar
  10. Beaudoin F, Napier JA (2000) The targeting and accumulation of ectopically expressed oleosin in non-seed tissues of Arabidopsis thaliana. Planta 210:439–445PubMedCrossRefGoogle Scholar
  11. Bell RM, Cronan JEJr (1975) Mutants of Escherichia coli defective in membrane phospholipid synthesis phenotypic suppression of sn-glycerol-3-phosphate acyltransferase Km mutants by loss of feedback inhibition of the biosynthetic sn-glycerol-3-phosphate dehydrogenase. J Biol Chem 250:7153–7158PubMedGoogle Scholar
  12. Bhat SR (2010) Transgenics for increasing productivity of crops. J Plant Biochem Biotechnol 19:1–7CrossRefGoogle Scholar
  13. Cao Z, Gao H, Liu M, Jiao P (2006) Engineering the acetyl-CoA transportation system of Candida tropicalis enhances the production of dicarboxylic acid. Biotechnol J 1(1):68–74PubMedCrossRefGoogle Scholar
  14. Century K, Reuber TL, Ratcliffe OJ (2008) Regulating the regulators: the future prospects for transcription-factor-based agricultural biotechnology products. Plant Physiol 147:20–29PubMedPubMedCentralCrossRefGoogle Scholar
  15. Cernac A, Benning C (2004) WRINKLED1 encodes an AP2/EREB domain protein involved in the control of storage compound biosynthesis in Arabidopsis. Plant J 40:575–585PubMedCrossRefGoogle Scholar
  16. Chai G, Bai Z, Wei F, King GJ, Wang C, Shi L, Dong C, Chen H, Liu S (2010) Brassica GLABRA2 genes: analysis of function related to seed oil content and development of functional markers. Theor Appl Genet 120:1597–1610PubMedCrossRefGoogle Scholar
  17. Chandran D, Sankararamasubramanian HM, Kumar MA, Parida A (2014) Differential expression analysis of transcripts related to oil metabolism in maturing seeds of Jatropha curcas L. Physiol Mol Biol Plants 20(2):181–190PubMedPubMedCentralCrossRefGoogle Scholar
  18. Chen L, Hao L, Parry MA, Phillips AL, Hu YG (2014) Progress in TILLING as a tool for functional genomics and improvement of crops. J Integrative Plant Biol 56:425–443CrossRefGoogle Scholar
  19. Chen S, Lei Y, Xu X, Huang J, Jiang H, Wang J, Li Y (2015) The peanut (Arachis hypogaea L.) gene AhLPAT2 increases the lipid content of transgenic Arabidopsis seeds. PloS One 10(8):e0136170PubMedPubMedCentralCrossRefGoogle Scholar
  20. Chia TY, Pike MJ, Rawsthorne S (2005) Storage oil breakdown during embryo development of Brassica napus (L.) J Exp Bot 56(415):1285–1296PubMedCrossRefGoogle Scholar
  21. Dahlqvist A, Stahl U, Lenman M, Banas A, Lee M, Sandager L, Ronne H, Stymne S (2000) Phospholipid: diacylglycerolacyltransferase: an enzyme that catalyzes the acyl-CoA-independent formation of triacylglycerol in yeast and plants. Proc Nat Acad Sci USA 97:6487–6492PubMedPubMedCentralCrossRefGoogle Scholar
  22. DeLuca H (2012) (ed) The fat-soluble vitamins, vol 2. Springer Science & Business Media, New YorkGoogle Scholar
  23. Eastmond PJ (2006) SUGAR-DEPENDENT1 encodes a patatin domain triacylglycerol lipase that initiates storage oil breakdown in germinating Arabidopsis seeds. Plant Cell 18(3):665–675PubMedPubMedCentralCrossRefGoogle Scholar
  24. El Tahchy A, Petrie JR, Shrestha P, Vanhercke T, Singh SP (2015) Expression of mouse MGAT in Arabidopsis results in increased lipid accumulation in seeds. Front Plant Sci 6:1180PubMedPubMedCentralCrossRefGoogle Scholar
  25. Elahi N, Duncan RW, Stasolla C (2016a) Molecular regulation of seed oil accumulation. J Adv Nutri Human Metabol 2:1–11Google Scholar
  26. Elahi N, Duncan RW, Stasolla C (2016b) Modification of oil and glucosinolate content in canola seeds with altered expression of Brassica napus LEAFY COTYLEDON1. Plant Physiol Biochemi 100:52–63.CrossRefGoogle Scholar
  27. Eskandari M, Cober ER, Rajcan I (2013) Genetic control of soybean seed oil: I QTL and genes associated with seed oil concentration in RIL populations derived from crossing moderately high-oil parents. Theor Appl Genet 126(2):483–495PubMedCrossRefGoogle Scholar
  28. Fan J, Yan C, Zhang X, Xu C (2013) Dual role for phospholipid: diacylglycerol acyltransferase: enhancing FA synthesis and diverting FAs from membrane lipids to triacylglycerol in Arabidopsis leaves. Plant Cell 25(9):3506–3518PubMedPubMedCentralCrossRefGoogle Scholar
  29. Farré G, Twyman RM, Christou P, Capell T, Zhu C (2015) Knowledge-driven approaches for engineering complex metabolic pathways in plants. Curr Opin Biotechnol 32:54–60PubMedCrossRefGoogle Scholar
  30. Fatihi A, Zbierzak AM, Dormann P (2013) Alterations in seed development gene expression affect size and oil content of Arabidopsis seeds. Plant Physiol 163:973–985PubMedPubMedCentralCrossRefGoogle Scholar
  31. Focks N, Benning C (1998) wrinkled1: a novel low-seed-oil mutant of Arabidopsis with a deficiency in the seed-specific regulation of carbohydrate metabolism. Plant Physiol 118:91–101PubMedPubMedCentralCrossRefGoogle Scholar
  32. Fortescue JA, Turner DW (2007) Changes in seed size and oil accumulation in Brassica napus L. by manipulating the source–sink ratio and excluding light from the developing siliques. Crop Pasture Sci 58:413–424.CrossRefGoogle Scholar
  33. Froissard M, D’Andrea S, Boulard C, Chardot T (2009) Heterologous expression of AtClo1, a plant oil body protein, induces lipid accumulation in yeast. FEMS Yeast Res 9:428–438PubMedCrossRefGoogle Scholar
  34. Gaj T, Gersbach CA, Barbas CF (2013) ZFN TALEN and CRISPR/Cas-based methods for genome engineering. Trends Biotechnol 31:397–405PubMedPubMedCentralCrossRefGoogle Scholar
  35. Gibon Y, Vigeolas H, Tiessen A, Geigenberger P, Stitt M (2002) Sensitive and high throughput metabolite assays for inorganic pyrophosphate, ADPGlc, nucleotide phosphates, and glycolytic intermediates based on a novel enzymic cycling system. Plant J 30:221–235PubMedCrossRefGoogle Scholar
  36. Gu K, Yi C, Tian D, Sangha JS, Hong Y, Yin Z (2012) Expression of FA and lipid biosynthetic genes in developing endosperm of Jatropha curcas. Biotechnol Biofuels 5(1):47PubMedPubMedCentralCrossRefGoogle Scholar
  37. Guan XY, Li QJ, Shan CM, Wang S, Mao YB, Wang LJ, Chen XY (2008) The HD-Zip IV gene GaHOX1 from cotton is a functional homologue of the Arabidopsis GLABRA2. Physiol Plant 134:174–182PubMedCrossRefGoogle Scholar
  38. Guo L, Ma F, Wei F, Fanella B, Allen DK, Wang X (2014) Cytosolic phosphorylating glyceraldehyde-3-phosphate dehydrogenases affect Arabidopsis cellular metabolism and promote seed oil accumulation. Plant Cell 26:3023–3035PubMedPubMedCentralCrossRefGoogle Scholar
  39. Gupta PK (2008) Molecular biology and genetic engineering. Deep and Deep Publications, New DelhiGoogle Scholar
  40. Guschina IA, Everard JD, Kinney AJ, Quant PA, Harwood JL (2014) Studies on the regulation of lipid biosynthesis in plants: application of control analysis to soybean. Biochim Biophys Acta (BBA) Biomembr 1838:1488–1500CrossRefGoogle Scholar
  41. Halpin C (2005) Gene stacking in transgenic plants–the challenge for 21st century plant biotechnology. Plant Biotechnol J 3:141–155PubMedCrossRefGoogle Scholar
  42. Harwood JL, Guschina IA (2013) Regulation of lipid synthesis in oil crops. FEBS Lett 587:2079–2081PubMedCrossRefGoogle Scholar
  43. Hoy JA, Hargrove MS (2008) The structure and function of plant hemoglobins. Plant Physiol Biochem 46:371–379PubMedCrossRefGoogle Scholar
  44. Hu Z, Wang X, Zhan G, Liu G, Hua W, Wang H (2009) Unusually large oilbodies are highly correlated with lower oil content in Brassica napus. Plant Cell Rep 28:541–549PubMedCrossRefGoogle Scholar
  45. Hu Z-Y, Hua W, Zhang L, Deng L-B et al (2013) Seed structure characteristics to form ultrahigh oil content in rapeseed. PLoS One 8:e62099PubMedPubMedCentralCrossRefGoogle Scholar
  46. Hua W, Li R, Zhan G, Liu J, Li J, Wang X, Liu, Wang H (2012) Maternal control of seed oil content in B. napus: the role of silique wall photosynthesis. Plant J 69:432–444PubMedCrossRefGoogle Scholar
  47. Hua W, Liu J, Wang H (2016) Molecular regulation and genetic improvement of seed oil content in Brassica napus L. Front Agr Sci Eng 3:186–194CrossRefGoogle Scholar
  48. Huang AH (1975) Enzymes of glycerol metabolism in the storage tissues of fatty seedlings. Plant Physiol 55:555–558PubMedPubMedCentralCrossRefGoogle Scholar
  49. Huang AH, Moreau RA (1978) Lipases in the storage tissues of peanut and other oil seeds during germination. Planta 141:111–116PubMedCrossRefGoogle Scholar
  50. Hunt AG, Maiti IB (2001) Strategies for expressing multiple foreign genes in plants as polycistronic constructs. In Vitro Cell Dev Biol Plant 37:313–320CrossRefGoogle Scholar
  51. Issariyakul T, Dalai AK (2014) Biodiesel from vegetable oils. Renew Sustain Energy Rev 31:446–471CrossRefGoogle Scholar
  52. Jain RK, Coffey M, Lai K, Kumar A, MacKenzie SL (2000) Enhancement of seed oil content by expression of glycerol-3- phosphate acyltransferase genes. Biochem Soc Trans 28:958–961PubMedCrossRefGoogle Scholar
  53. Jofuku KD, Omidyar PK, Gee Z, Okamuro JK (2005) Control of seed mass and seed yield by the floral homeotic gene APETALA2. Proc Nat Aca Sci USA 102:3117CrossRefGoogle Scholar
  54. Kanai M, Mano S, Kondo M, Hayashi M, Nishimura M (2015) Extension of oil biosynthesis during the mid-phase of seed development enhances oil content in Arabidopsis seeds. Plant Biotechnol J. doi: 10.1111/pbi.12489 PubMedGoogle Scholar
  55. Kashyap PL, Sanghera GS, Wani SH, Shafi W, Kumar S et al (2011) Genes of microorganisms: paving way to tailor next generation fungal disease resistant crop plants. Not Sci Biol 3:147–157Google Scholar
  56. Katavic V, Reed DW, Taylor DC, Giblin EM, Barton DL, Zou J et al (1995) Alteration of seed FA composition by an ethyl methane sulfonate–induced mutation in Arabidopsis thaliana affecting diacylglycerol acyltransferase activity. Plant Physiol 108:399–409PubMedPubMedCentralCrossRefGoogle Scholar
  57. Kelly AA, Erp HV, Quettier AL, Shaw E, Menard G, Kurup S, Eastmond PJ (2013a) The SUGAR-DEPENDENT1 lipase limits triacylglycerol accumulation in vegetative tissues of Arabidopsis. Plant Physiol 162:1282–1289PubMedPubMedCentralCrossRefGoogle Scholar
  58. Kelly AA, Shaw E, Powers SJ, Kurup S, Eastmond PJ (2013b) Suppression of the SUGAR-DEPENDENT1 triacylglycerol lipase family during seed development enhances oil yield in oilseed rape (Brassica napus L.). Plant Biotechnol J 11:355–361PubMedCrossRefGoogle Scholar
  59. Kerbach S, Lörz H, Becker D (2005) Site-specific recombination in Zea mays. Theor Appl Genet 111:1608–1616PubMedCrossRefGoogle Scholar
  60. Khan RS, Nakamura I, Mii M (2011) Development of disease-resistant marker-free tomato by R/RS site-specific recombination. Plant Cell Rep 30:1041–1053PubMedCrossRefGoogle Scholar
  61. Kim MJ, Yang SW, Mao HZ, Veena SP, Yin JL, Chua NH (2014) Gene silencing of sugar-dependent1 (JcSDP1) encoding a patatin-domain triacylglycerol lipase enhances seed oil accumulation in Jatropha curcas. Biotechnol Biofuels 7:36PubMedPubMedCentralCrossRefGoogle Scholar
  62. Klaus D, Ohlrogge JB, Neuhaus HE, Dörmann P (2004) Increased FA production in potato by engineering of acetyl-CoA carboxylase. Planta 219:389–396PubMedCrossRefGoogle Scholar
  63. Li Z, Xing A, Moon BP, McCardell RP, Mills K, Falco SC (2009) Site-specific integration of transgenes in soybean via recombinase-mediated DNA cassette exchange. Plant Physiol 151:1087–1095PubMedPubMedCentralCrossRefGoogle Scholar
  64. Li M, Wei F, Tawfall A, Tang M, Saettele A, Wang X (2015) Overexpression of patatin related phospholipase AIIIδ altered plant growth and increased seed oil content in camelina. Plant Biotechnol J 13:766–778PubMedCrossRefGoogle Scholar
  65. Li-Beisson Y, Shorrosh B, Beisson F, Andersson MX, Arondel V, Bates PD et al (2013) Acyl-lipid metabolism. Arabidopsis Book 11:e0161PubMedPubMedCentralCrossRefGoogle Scholar
  66. Lin ECC (1976) Glycerol dissimilation and its regulation in bacteria. Ann Rev Microbiol 30:535–578CrossRefGoogle Scholar
  67. Lin YH, Huang AH (1983) Lipase in lipid bodies of cotyledons of rape and mustard seedlings. Arch Biochem Biophys 225:360–369PubMedCrossRefGoogle Scholar
  68. Liu J, Hua W, Zhan G, Wei F, Wang X, Liu G, Wang H (2010) Increasing seed mass and oil content in transgenic Arabidopsis by the overexpression of wri1-like gene from B. napus. Plant Physiol Biochem 48:9–15PubMedCrossRefGoogle Scholar
  69. Liu J, Hua W, Yang HL, Zhan GM, Li RJ, Deng LB et al (2012) The BnGRF2 gene (GRF2-like gene from Brassica napus) enhances seed oil production through regulating cell number and plant photosynthesis. J Exp Bot 63:3727–3740PubMedPubMedCentralCrossRefGoogle Scholar
  70. Liu WX, Liu HL, Qu LQ (2013) Embryo-specific expression of soybean oleosin altered oil body morphogenesis and increased lipid content in transgenic rice seeds. Theor Appl Genet 126:2289–2297PubMedCrossRefGoogle Scholar
  71. Liu F, Xia Y, Wu L, Fu D, Hayward A, Luo J et al (2015) Enhanced seed oil content by overexpressing genes related to triacylglyceride synthesis. Gene 557:163–171PubMedCrossRefGoogle Scholar
  72. Liu Q, Guo Q, Akbar S, Zhi Y, El Tahchy A, Mitchell M et al (2016) Genetic enhancement of oil content in potato tuber (Solanum tuberosum L.) through an integrated metabolic engineering strategy. Plant Biotechnol J. doi: 10.1111/pbi.12590 Google Scholar
  73. Lu C, Fulda M, Wallis JG, Browse J (2006) A high-throughput screen for genes from castor that boost hydroxy FA accumulation in seed oils of transgenic Arabidopsis. Plant J 45:847–856PubMedCrossRefGoogle Scholar
  74. Maheshwar P, Kovalchuk I (2014) Genetic engineering of oilseed crops. Biocatal Agricult Biotechnol 3:31–37Google Scholar
  75. Maisonneuve S, Bessoule J, Lessire R, Delseny M, Roscoe TJ (2010) Expression of rapeseed microsomal Lysophosphatidic acid acyltransferase isozymes enhances seed oil content in Arabidopsis. Plant Physiol 152:670–684PubMedPubMedCentralCrossRefGoogle Scholar
  76. Marillia E, Micallef BJ, Micallef M, Weninger A, Pedersen KK, Zou J, Taylor DC (2003) Biochemical and physiological studies of Arabidopsis thaliana transgenic lines with repressed expression of the mitochondrial pyruvate dehydrogenase kinase. J Exp Bot 54:259–270PubMedCrossRefGoogle Scholar
  77. Meyer K, Kinney AJ (2010) Biosynthesis and biotechnology of seed lipids including sterols carotenoids and tocochromanols. In: Lipids in photosynthesis, Springer Netherlands, pp 407–444Google Scholar
  78. Meyer K, Stecca KL, Ewell-Hicks K, Allen SM, Everard JD (2012) Oil and protein accumulation in developing seeds is influenced by the expression of a cytosolic pyrophosphatase in Arabidopsis. Plant Physiol 159:1221–1234PubMedPubMedCentralCrossRefGoogle Scholar
  79. Mu J, Tan H, Zheng Q, Fu F, Liang Y, Zhang J, Yang X, Wang T, Chong K, Wang XJ, Zuo J (2008) LEAFY COTYLEDON1 is a key regulator of FA biosynthesis in Arabidopsis. Plant Physiol 148:1042–1054PubMedPubMedCentralCrossRefGoogle Scholar
  80. Murphy DJ (1995) The use of conventional and molecular genetics to produce new diversity in seed oil composition for the use of plant breeders—progress problems and future prospects. In: The methodology of plant genetic manipulation: criteria for decision making, Springer Netherlands, pp 433–440Google Scholar
  81. Murphy DJ (1996) Engineering oil production in rapeseed and other oil crops. Trends Biotechnol 14:206–213CrossRefGoogle Scholar
  82. Murphy DJ (2014) Using modern plant breeding to improve the nutritional and technological qualities of oil crops. OCL 21:D607CrossRefGoogle Scholar
  83. Nguyen HT, Park H, Koster KL, Cahoon RE, Nguyen HTM et al (2015) Redirection of metabolic flux for high levels of omega-7monounsaturated FA accumulation in camelina seeds. Plant Biotechnol J 13:38–50PubMedCrossRefGoogle Scholar
  84. OECD/FAO (2015) OECD-FAO agricultural outlook. OECD agriculture statistics (database). doi: 10.1787/agr-outl-data-en
  85. Ohlrogge JB, Jaworski JG (1997) Regulation of fatty acid synthesis. Annu Rev Plant Physiol Plant Mol Biol 48:109–136PubMedCrossRefGoogle Scholar
  86. Pandey MK, Wang ML, Qiao L, Feng S, Khera P, Wang H et al (2014) Identification of QTLs associated with oil content and mapping FAD2 genes and their relative contribution to oil quality in peanut (Arachis hypogaea L.). BMC Genet 15:133PubMedPubMedCentralCrossRefGoogle Scholar
  87. Paul MJ, Foyer CH (2001) Sink regulation of photosynthesis. J Exp Bot 52:1383–1400PubMedCrossRefGoogle Scholar
  88. Perry HY, Bligny R, Gout E, Harwood JL (1999) Changes in Kennedy pathway intermediates associated with increased triacylglycerol synthesis in oilseed rape. Phytochem 52:799–804CrossRefGoogle Scholar
  89. Petrie JR, Vanhercke T, Shrestha P, El-Tahchy A, White A, Zhou XR, Liu Q, Mansour M, Nichols PD, Singh SP (2012) Recruiting a new substrate for triacylglycerol synthesis in plants: the monoacylglycerolacyltransferase pathway. PLoS One 7:e35214PubMedPubMedCentralCrossRefGoogle Scholar
  90. Phan CT, Tso P (2001) Intestinal lipid absorption and transport. Front Biosci 6:D299–D319PubMedCrossRefGoogle Scholar
  91. Pouvreau B, Baud S, Vernoud V, Morin V, Py C, Gendrot G, Pichon J-P, Rouster J, Paul W, Rogowsky PM (2011) Duplicate maize Wrinkled1 transcription factors activate target genes involved in seed oil biosynthesis. Plant Physiol 156:674–686PubMedPubMedCentralCrossRefGoogle Scholar
  92. Rahman H, Harwood JL, Weselake R (2013) Increasing seed oilcontent in Brassica species through breeding and biotechnology. Lipid Technol 25:182–185CrossRefGoogle Scholar
  93. Ramli US, Salas JJ, Quant PA, Harwood JL (2005) Metabolic control analysis reveals an important role for diacylglycerol acyltransferase in olive but not in oil palm lipid accumulation. FEBS J 272:5764–5770PubMedCrossRefGoogle Scholar
  94. Rao SS, Hildebrand D (2009) Changes in oil content of transgenic soybeans expressing the yeast SLC1 gene. Lipids 44:945–951PubMedCrossRefGoogle Scholar
  95. Reddy VS, Rao DKV, Rajasekharan R (2010) Functional characterization of lysophosphatidic acid phosphatase from Arabidopsis thaliana. Biochim Biophys Acta 1801:455–461PubMedCrossRefGoogle Scholar
  96. Roesler K, Shintani D, Savage L, Boddupalli S, Ohlrogge J (1997) Targeting of the Arabidopsis homomeric acetyl-coenzyme A carboxylase to plastids of rapeseeds. Plant Physiol 113:75–81PubMedPubMedCentralCrossRefGoogle Scholar
  97. Roesler K, Shen B, Bermudez E, Li C, Hunt J, Damude HG, Feng L (2016) An improved variant of soybean type 1 diacylglycerol acyltransferase increases the oil content and decreases the soluble carbohydrate content of soybeans. Plant Physiol 171:878–893PubMedPubMedCentralGoogle Scholar
  98. Rolletschek H, Borisjuk L, Sánchez-García A, Gotor C, Romero LC, Martínez-Rivas JM, Mancha M (2007) Temperature-dependent endogenous oxygen concentration regulates microsomal oleate desaturase in developing sunflower seeds. J Exp Bot 58:3171–3181PubMedCrossRefGoogle Scholar
  99. Ruuska SA, Girke T, Benning C, Ohlrogge JB (2002) Contrapuntal networks of gene expression during Arabidopsis seed filling. Plant Cell 14:1191–1206PubMedPubMedCentralCrossRefGoogle Scholar
  100. Samarth NB, Mahanwar PA (2015) Modified vegetable oil based additives as a future polymeric material-review. Open J Org Pol Mat 5:1–22CrossRefGoogle Scholar
  101. Sanghera GS, Kashyap PL, Singh G, da Silva JAT (2011) Transgenics: fast track to plant stress amelioration. Transgenic Plant J 5:1–26Google Scholar
  102. Santos-Mendoza M, Dubreucq B, Baud S, Parcy F, Caboche M, Lepiniec L (2008) Deciphering gene regulatory networks that control seed development and maturation in Arabidopsis. Plant J 54:608–620PubMedCrossRefGoogle Scholar
  103. Sasaki Y, Nagano Y (2004) Plant acetyl-CoA carboxylase: structure, biosynthesis, regulation, and gene manipulation for plant breeding. Biosci Biotechnol Biochemi 68:1175–1184CrossRefGoogle Scholar
  104. Savadi S, Naresh V, Kumar V, Bhat SR (2015) Effect of overexpression of Arabidopsis thaliana SHB1 and KLUH genes on seed weight and yield contributing traits in Indian mustard (Brassica juncea L. (Czern.). Indian J Genet 75:349–356Google Scholar
  105. Savadi S, Naresh V, Kumar V, Bhat SR (2016) Seed-specific overexpression of Arabidopsis DGAT1 in Indian mustard (Brassica juncea) increases seed oil content and seed weight. Botany 94:177–184CrossRefGoogle Scholar
  106. Schulz A, Beyhl D, Marten I, Wormit A, Neuhaus E, Poschet G et al (2011) Proton-driven sucrose symport and antiport are provided by the vacuolar transporters SUC4 and TMT1/2. Plant J 68:129–136PubMedCrossRefGoogle Scholar
  107. Sharma A, Chauhan RS (2012) In silico identification and comparative genomics of candidate genes involved in biosynthesis and accumulation of seed oil in plants. Comparat Funct Genom 2012:914843Google Scholar
  108. Sharma N, Anderson M, Kumar A, Zhang Y, Giblin EM, Abrams SR et al (2008) Transgenic increases in seed oil content are associated with the differential expression of novel Brassica-specific transcripts. BMC Genom 9:619CrossRefGoogle Scholar
  109. Shen B, Sinkevicius KW, Selinger DA, Tarczynski MC (2006) The homeobox gene GLABRA2 affects seed oil content in Arabidopsis. Plant Mol Biol 60:377–387PubMedCrossRefGoogle Scholar
  110. Shen B, Allen WB, Zheng P, Li C, Glassman K, Ranch J, Nubel D, Tarczynski MC (2010a) Expression of ZmLEC1 and ZmWRI1 increases seed oil production in maize. Plant Physiol 153:980–987PubMedPubMedCentralCrossRefGoogle Scholar
  111. Shen W, Li JQ, Dauk M, Huang Y, Periappuram C, Wei Y, Zou J (2010b) Metabolic and transcriptional responses of glycerolipid pathways to a perturbation of glycerol-3-phosphate metabolism in Arabidopsis. J Biol Chem 285:22957–22965PubMedPubMedCentralCrossRefGoogle Scholar
  112. Shi L, Katavic V, Yu Y, Kunst L, Haughn G (2012) Arabidopsis glabra2 mutant seeds deficient in mucilage biosynthesis produce more oil. Plant J 69:37–46PubMedCrossRefGoogle Scholar
  113. Shimada TL, Shimada T, Takahashi H, Fukao Y, Hara-Nishimura I (2008) A novel role for oleosins in freezing tolerance of oilseeds in Arabidopsis thaliana. Plant J 55:798–809PubMedCrossRefGoogle Scholar
  114. Shintani DK, Ohlrogge JB (1995) Feedback inhibition of FA synthesis in tobacco suspension cells. Plant J 7:577–587CrossRefGoogle Scholar
  115. Siloto RMP, Findlay K, Lopez-Villalobos A, Yeung EC, Nykiforuk CL, Moloney MM (2006) The accumulation of oleosins determines the size of seed oilbodies in Arabidopsis. Plant Cell 18:1961–1974PubMedPubMedCentralCrossRefGoogle Scholar
  116. Stahl U, Carlsson AS, Lenman M, Dahlqvist A, Huang B, Banas W et al (2004) Cloning and functional characterization of a phospholipid:diacylglycerol acyltransferase from Arabidopsis. Plant Physiol 135:1324–1335PubMedPubMedCentralCrossRefGoogle Scholar
  117. Tan HL, Yang XH, Zhang FX, Zheng X, Qu CM, Mu JY, Fu FY, Li JN, Guan RZ, Zhang HS, Wang GD, Zuo JR (2011) Enhance seed oil production in canola by conditional expression of B. napus LEAFY COTYLEDON1 (BnLEC1) and LEC1-LIKE (BnL1L) in developing seeds. Plant Physiol 156:1577–1588PubMedPubMedCentralCrossRefGoogle Scholar
  118. Taylor DC, Katavic V, Zou J, MacKenzie SL, Keller WA (2002) Field testing of transgenic rapeseed cv Hero transformed with a yeast sn-2 acyltransferase results in increased oil content erucic acid content and seed yield. Mol Breed 8:317–322CrossRefGoogle Scholar
  119. Taylor DC, Zhang Y, Kumar A, Francis A, Giblin EM, Barton D, Ferrie JR, Laroche A, Shah S, Zhu W et al (2009) Molecular modification of triacylglycerol accumulation by overexpression of DGAT1 to produce canola with increased seed oil content under field conditions. Botany 87:533–543CrossRefGoogle Scholar
  120. Teh L, Möllers C (2016) Genetic variation and inheritance of phytosterol and oil content in a doubled haploid population derived from the winter oilseed rape Sansibar × Oase cross. Theor Appl Genet 129:181–199PubMedCrossRefGoogle Scholar
  121. Thelen JJ, Ohlrogge JB (2002) Both antisense and sense expression of Biotin carboxyl carrier protein isoform 2 inactivates the plastid acetyl coenzyme-A carboxylase in Arabidopsis thaliana. Plant J 32:419–431PubMedCrossRefGoogle Scholar
  122. Thelen JJ, Miernyk JA, Randall DD (1998) Partial purification and characterization of the maize mitochondrial pyruvate dehydrogenase complex. Plant Physiol 116:1443–1450PubMedPubMedCentralCrossRefGoogle Scholar
  123. Tian Y, Zhang M, Hu X, Wang L, Dai J, Xu Y, Chen F (2016) Overexpression of CYP78A98 a cytochrome P450 gene from Jatropha curcas L., increases seed size of transgenic tobacco. Electron J Biotechnol 19:15–22CrossRefGoogle Scholar
  124. Van Camp W (2005) Yield enhancement genes: seeds for growth. Curr Opi Biotechnol 16:147–153CrossRefGoogle Scholar
  125. van Erp H, Kelly AA, Menard G, Eastmond PJ (2014) Multigene engineering of triacylglycerol metabolism boosts seed oil content in Arabidopsis. Plant Physiol 165:30–36PubMedPubMedCentralCrossRefGoogle Scholar
  126. Vanhercke T, El Tahchy A, Shrestha P, Zhou XR, Singh SP, Petrie JR (2013) Synergistic effect of WRI1 and DGAT1 coexpression on triacylglycerol biosynthesis in plants. FEBS Lett 587:364–369PubMedCrossRefGoogle Scholar
  127. Vanhercke T, El Tahchy A, Liu Q, Zhou XR, Shrestha P, Divi UK et al (2014) Metabolic engineering of biomass for high energy density: oilseed-like triacylglycerol yields from plant leaves. Plant Biotechnol J 12:231–239PubMedCrossRefGoogle Scholar
  128. Verdier J, Thompson RD (2008) Transcriptional regulation of storage protein synthesis during dicotyledon seed filling. Plant Cell Physiol 49:1263–1271PubMedCrossRefGoogle Scholar
  129. Verwoert II, van der Linden KH, Walsh MC, Nijkamp HJJ, Stuitje AR (1995) Modification of Brassica napus seed oil by expression of the Escherichia coli fabH gene encoding 3-ketoacyl-acyl carrier protein synthase III. Plant Mol Biol 27:875–886PubMedCrossRefGoogle Scholar
  130. Vigeolas H, Geigenberger P (2004) Increased levels of glycerol-3-phosphate lead to a stimulation of flux into triacylglycerol synthesis after supplying glycerol to developing seeds of B. napus L. in planta. Planta 219:827–835PubMedCrossRefGoogle Scholar
  131. Vigeolas H, van Dongen JT, Waldeck P, Hühn D, Geigenberger P (2003) Lipid storage metabolism is limited by the prevailing low oxygen concentrations within developing seeds of oilseed rape. Plant Physiol 133:2048–2060PubMedPubMedCentralCrossRefGoogle Scholar
  132. Vigeolas H, Waldeck P, Zank T, Geigenberger P (2007) Increasing seed oil content in oil-seed rape (B. napus L.) by overexpression of a yeast glycerol-3-phosphate dehydrogenase under the control of a seed-specific promoter. Plant Biotechnol J 5:431–441PubMedCrossRefGoogle Scholar
  133. Vigeolas H, Huhn D, Geigenberger P (2011) NonsymbioticHemoglobin-2 leads to an elevated energy state and to a combined increase in polyunsaturated FAs and total oil content when overexpressed in developing seeds of transgenic Arabidopsis plants. Plant Physiol 155:1435–1444PubMedPubMedCentralCrossRefGoogle Scholar
  134. Wakao S, Andre C, Benning C (2008) Functional analyses of cytosolic glucose-6-phosphate dehydrogenases and their contribution to seed oil accumulation in Arabidopsis. Plant Physiol 146:277–288PubMedPubMedCentralCrossRefGoogle Scholar
  135. Wan B (2015) Transgenic pyramiding for crop improvement. In: Advances in plant breeding strategies. Breeding Biotechnology and Molecular Tools Springer International Publishing, Chicago, pp 369–396Google Scholar
  136. Wang Z, Huang W, Chang J, Sebastian A, Li Y, Li H et al (2014a) Overexpression of SiDGAT1 a gene encoding acyl-CoA: diacylglycerol acyltransferase from Sesamum indicum L. increases oil content in transgenic Arabidopsis and soybean. Plant Cell Tissue Organ Cult 119:399–410CrossRefGoogle Scholar
  137. Wang Y, Han Y, Teng W, Zhao X, Li Y, Wu L, Li D, Li W (2014b) Expression quantitative trait loci infer the regulation of isoflavone accumulation in soybean (Glycine max L Merr.) seed. BMC Genom 15:680CrossRefGoogle Scholar
  138. Wang ML, Khera P, Pandey MK, Wang H, Qiao L, Feng S et al (2015) Genetic mapping of QTLs controlling FAs provided insights into the genetic control of FA synthesis pathway in peanut (Arachis hypogaea L.). PLoS One 10:e0119454PubMedPubMedCentralCrossRefGoogle Scholar
  139. Weselake RJ, Taylor DC, Rahman MH, Shah S, Laroche A, McVetty PB, Harwood JL (2009) Increasing the flow of carbon into seed oil. Biotechnol Adv 27:866–878PubMedCrossRefGoogle Scholar
  140. Wingenter K, Schulz A, Wormit A, Wic S, Trentmann O, Hoermiller II et al (2010) Increased activity of the vacuolar monosaccharide transporter TMT1 alters cellular sugar partitioning sugar signaling and seed yield in Arabidopsis. Plant Physiol 154:665–677PubMedPubMedCentralCrossRefGoogle Scholar
  141. Winichayakul S, Scott RW, Roldan M, Hatier JHB, Livingston S, Cookson R et al (2013) In vivo packaging of triacylglycerols enhances Arabidopsis leaf biomass and energy density. Plant Physiol 162:626–639PubMedPubMedCentralCrossRefGoogle Scholar
  142. Wormit A, Trentmann O, Feifer I, Lohr C, Tjaden J, Meyer S et al (2006) Molecular identification and physiological characterization of a novel monosaccharide transporter from Arabidopsis involved in vacuolar sugar transport. Plant Cell 18:3476–3490PubMedPubMedCentralCrossRefGoogle Scholar
  143. Xu C, Fan J, Yan C, Shanklin J (2015) U.S Patent No20150337017. U.S Patent and Trademark Office, WashingtonGoogle Scholar
  144. Xu C, Fan J, Yan C, Shanklin J (2016) U.S Patent No20160002651. U.S Patent and Trademark Office, WashingtonGoogle Scholar
  145. Yadava DK, Vasudev S, Singh N, Mohapatra T, Prabhu KV (2012) Breeding major oil crops: present status and future research needs. In: Gupta SK (ed) Technological innovations in major world oil crops, vol 1: breeding. Springer Science and Business Media, LLC, New York, pp 17–51CrossRefGoogle Scholar
  146. Zadran S, Levine RD (2013) Perspectives in metabolic engineering: understanding cellular regulation towards the control of metabolic routes. Appl Biochemi Biotechnol 169:55–65CrossRefGoogle Scholar
  147. Zhang FY, Yang MF, Xu YN (2005) Silencing of DGAT1 in tobacco causes a reduction in seed oil content. Plant Sci 169:689–694CrossRefGoogle Scholar
  148. Zhang M, Fan J, Taylor DC, Ohlrogge JB (2009) DGAT1 and PDAT1 acyltransferases have overlapping functions in Arabidopsis triacylglycerol biosynthesis and are essential for normal pollen and seed development. Plant Cell 21:3885–3901PubMedPubMedCentralCrossRefGoogle Scholar
  149. Zhang H, Zhang J, Wei P, Zhang B, Gou F, Feng Z, Zhu JK (2014) The CRISPR/Cas9 system produces specific and homozygous targeted gene editing in rice in one generation. Plant Biotechnol J 12:797–807PubMedCrossRefGoogle Scholar
  150. Zheng P, Allen WB, Roesler K, Williams ME, Zhang S, Li J et al (2008) A phenylalanine in DGAT is a key determinant of oil content and composition in maize. Nat Genet 40:367–372PubMedCrossRefGoogle Scholar
  151. Zhou Y, Zhang XJ, Kang XJ, Zhao XY, Zhang XS, Ni M (2009) SHORT HYPOCOTYL UNDER BLUE1 associates with MINISEED3 and HAIKU2 promoters in vivo to regulate Arabidopsis seed development. Plant Cell 21:106–117PubMedPubMedCentralCrossRefGoogle Scholar
  152. Zorrilla-López U, Masip G, Arjó G, Bai C, Banakar R, Bassie L et al (2013) Engineering metabolic pathways in plants by multigene transformation. Int J Dev Biol 57:565–576PubMedCrossRefGoogle Scholar
  153. Zou JT, Katavic V, Giblin EM, Barton DL, MacKenzie SL, Keller WA, Hu X, Taylor DC (1997) Modification of seed oil content and acyl composition in the Brassicaceae by expression of a yeast sn-2 acyltransferase gene. Plant Cell 9:909–923PubMedPubMedCentralCrossRefGoogle Scholar
  154. Zou J, Wei Y, Jako C, Kumar A, Selvaraj G, Taylor DC (1999) The Arabidopsis thaliana TAG1 mutant has a mutation in a diacylglycerolacyltransferase gene. Plant J 19:645–653PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2016

Authors and Affiliations

  • Siddanna Savadi
    • 1
    Email author
  • Nemappa Lambani
    • 2
  • Prem Lal Kashyap
    • 1
  • Deepak Singh Bisht
    • 2
  1. 1.ICAR-Indian Institute of Wheat and Barley Research (IIWBR)ShimlaIndia
  2. 2.ICAR-Indian Agricultural Research Institute (IARI)New DelhiIndia

Personalised recommendations