Plant Growth Regulation

, Volume 81, Issue 3, pp 523–532 | Cite as

The difference of cadmium accumulation between the indica and japonica subspecies and the mechanism of it

  • Quan Zhou
  • Guo-Sheng Shao
  • Ying-Xing Zhang
  • Qing Dong
  • Hong Wang
  • Shi-Hua Cheng
  • Li-Yong CaoEmail author
  • Xi-Hong ShenEmail author
Original paper


Many studies have shown genotypic differences in Cadmium (Cd) accumulation among rice cultivars, and concentrations in shoots and grains are generally higher in indica rice cultivars than in japonica rice cultivars, but the mechanism remains unknown. The main objective of this study was to investigate differences in heavy metal accumulation between rice subspecies through the analysis of 46 indica cultivars and 30 japonica cultivars. At the seedling stage, the mean Cd concentrations in the shoots of indica subspecies were significantly higher than those in japonica subspecies (1.22-fold), but this pattern was not observed in the roots. At the filling stage, the mean Cd concentrations in the shoots and spikes of indica subspecies were 1.66- and 2.14-fold higher than the respective concentrations in japonica subspecies. At the harvest stage, the mean Cd concentrations in the shoots and brown rice of indica subspecies were 1.61- and 2.27-fold higher than the respective concentrations in japonica subspecies. These results indicate that root-to-shoot and shoot-to-grain translocation, rather than Cd absorption in the roots, may be the key processes that determine the differences in Cd accumulation among rice subspecies. Gene expression analysis revealed that overall, the expression levels of the Cd transporter gene OsNramp1 notably increased (22.46-fold), but the expression levels of OsHMA2, OsHMA3 and OsNRAMP5 were not significantly changed at the seedling stage in the 76 cultivars exposed to Cd; the expression levels of OsNramp1 were positively correlated with the Cd concentrations in spikes at the filling stage. In addition, a significant difference was observed in the expression levels of OsNramp1 between the indica and japonica subspecies, which may explain the higher Cd concentrations in roots but lower Cd concentrations in spikes and brown rice for the japonica subspecies. Together, these results demonstrate that OsNramp1 may be the most important gene among the four selected genes in the promotion of Cd uptake by roots and transfer of Cd into spikes and eventually into brown rice.


Cadmium accumulation Rice subspecies Translocation Cd transporter Gene expression 







Translocation factor of root to shoot



This work was supported by a Special Fund for Agro-Scientific Research in the Public Interest (No. 201403015), the National Natural Science Foundation of China (No. 31571616) and Funds for Science and Technology Innovation Project from the Chinese Academy of Agricultural Sciences. We gratefully acknowledge Dr. Da-Li Zeng, China National Rice Research Institute, China, for supplying seeds of the 76 selected cultivars.

Supplementary material

10725_2016_229_MOESM1_ESM.docx (779 kb)
Supplementary material 1 (DOCX 778 KB)


  1. Arao T, Ishikawa S (2006) Genotypic differences in cadmium concentration and distribution of soybean and rice. JARQ 40:21–30. doi: 10.6090/jarq.40.21 CrossRefGoogle Scholar
  2. Cheng KS (1988) A statistical evaluation of the classification of rice cultivars into hsien and keng subspecies. Rice Genet Newslett 4:46–48Google Scholar
  3. Fujimaki S, Suzui N, Ishioka NS, Kawachi N, Ito S, Chino M, Nakamura S (2010) Tracing cadmium from culture to spikelet: noninvasive imaging and quantitative characterization of absorption, transport, and accumulation of cadmium in an intact rice plant. Plant Physiol 152:1796–1806. doi: 10.1104/pp.109.151035 CrossRefPubMedPubMedCentralGoogle Scholar
  4. Hseu ZY (2004) Evaluating heavy metal contents in nine composts using four digestion methods. Bioresour Technol 95:53–59. doi: 10.1016/j.biortech.2004.02.008 CrossRefPubMedGoogle Scholar
  5. Ishikawa S, Ishimaru Y, Igura M, Kuramata M, Abe T, Senoura T, Hase Y, Arao T, Nishizawa NK, Nakanishi H (2012) Ion-beam irradiation, gene identification, and marker-assisted breeding in the development of low-cadmium rice. Proc Natl Acad Sci USA 109:19166–19171. doi: 10.1073/pnas.1211132109 CrossRefPubMedPubMedCentralGoogle Scholar
  6. Ishimaru Y, Suzuki M, Tsukamoto T et al (2006) Rice plants take up iron as an Fe3+-phytosiderophore and as Fe2+. Plant J 45:335–346. doi: 10.1111/j.1365-313X.2005.02624.x CrossRefPubMedGoogle Scholar
  7. Ishimaru Y, Takahashi R, Bashir K et al. (2012) Characterizing the role of rice NRAMP5 in manganese, iron and cadmium transport. Sci Rep 2:286. doi: 10.1038/srep00286 CrossRefPubMedPubMedCentralGoogle Scholar
  8. Kikuchi T, Okazaki M, Toyota K, Motobayashi T, Kato M (2007) The input–output balance of cadmium in a paddy field of Tokyo. Chemosphere 67:920–927. doi: 10.1016/j.chemosphere.2006.11.018 CrossRefPubMedGoogle Scholar
  9. Kuramata M, Masuya S, Takahashi Y, Kitagawa E, Inoue C, Ishikawa S, Youssefian S, Kusano T (2009) Novel cysteine-rich peptides from Digitaria ciliaris and Oryza sativa enhance tolerance to cadmium by limiting its cellular accumulation. Plant Cell Physiol 50:106–117. doi: 10.1093/pcp/pcn175 CrossRefPubMedGoogle Scholar
  10. Liu J, Zhu Q, Zhang Z, Xu J, Yang J, Wong MH (2005) Variations in cadmium accumulation among rice cultivars and types and the selection of cultivars for reducing cadmium in the diet. J Sci Food Agric 85:147–153. doi: 10.1002/jsfa.1973 CrossRefGoogle Scholar
  11. Liu J, Qian M, Cai G, Yang J, Zhu Q (2007) Uptake and translocation of Cd in different rice cultivars and the relation with Cd accumulation in rice grain. J Hazard Mater 143:443–447. doi: 10.1016/j.jhazmat.2006.09.057 CrossRefPubMedGoogle Scholar
  12. Miyadate H, Adachi S, Hiraizumi A et al (2011) OsHMA3, a P1B-type of ATPase affects root-to-shoot cadmium translocation in rice by mediating efflux into vacuoles. New Phytol 189:190–199. doi: 10.1111/j.1469-8137.2010.03459.x CrossRefPubMedGoogle Scholar
  13. Morishita T, Fumoto N, Yoshizawa T, Kagawa K (1987) Varietal differences in cadmium levels of rice grains of japonica, indica, javanica, and hybrid varieties produced in the same plot of a field. Soil Sci Plant Nutr 33:629–637. doi: 10.1080/00380768.1987.10557611 CrossRefGoogle Scholar
  14. Nakanishi H, Ogawa I, Ishimaru Y, Mori S, Nishizawa NK (2006) Iron deficiency enhances cadmium uptake and translocation mediated by the Fe2+ transporters OsIRT1 and OsIRT2 in rice. Soil Sci Plant Nutr 52:464–469. doi: 10.1111/j.1747-0765.2006.00055.x CrossRefGoogle Scholar
  15. Oda K, Otani M, Uraguchi S, Akihiro T, Fujiwara T (2011) Rice ABCG43 is Cd inducible and confers Cd tolerance on yeast. Biosci Biotechnol Biochem 75:1211–1213. doi: 10.1271/bbb.110193 CrossRefPubMedGoogle Scholar
  16. Sasaki A, Yamaji N, Yokosho K, Ma JF (2012) Nramp5 is a major transporter responsible for manganese and cadmium uptake in rice. Plant Cell 24:2155–2167. doi: 10.1105/tpc.112.096925 CrossRefPubMedPubMedCentralGoogle Scholar
  17. Satoh-Nagasawa N, Mori M, Nakazawa N, Kawamoto T, Nagato Y, Sakurai K, Takahashi H, Watanabe A, Akagi H (2012) Mutations in rice (Oryza sativa) heavy metal ATPase 2 (OsHMA2) restrict the translocation of zinc and cadmium. Plant Cell Physiol 53:213–224. doi: 10.1093/pcp/pcr166 CrossRefPubMedGoogle Scholar
  18. Shi J, Li L, Pan G (2009) Variation of grain Cd and Zn concentrations of 110 hybrid rice cultivars grown in a low-Cd paddy soil. J Environ Sci 21:168–172. doi: 10.1016/S1001-0742(08)62246-9 CrossRefGoogle Scholar
  19. Shimo H, Ishimaru Y, An G, Yamakawa T, Nakanishi H, Nishizawa NK (2011) Low cadmium (LCD), a novel gene related to cadmium tolerance and accumulation in rice. J Exp Bot 62:5727–5734. doi: 10.1093/jxb/err300 CrossRefPubMedPubMedCentralGoogle Scholar
  20. Takahashi R, Ishimaru Y, Senoura T, Shimo H, Ishikawa S, Arao T, Nakanishi H, Nishizawa NK (2011) The OsNRAMP1 iron transporter is involved in Cd accumulation in rice. J Exp Bot 62:4843–4850. doi: 10.1093/jxb/err136 CrossRefPubMedPubMedCentralGoogle Scholar
  21. Takahashi R, Ishimaru Y, Shimo H, Ogo Y, Senoura T, Nishizawa NK, Nakanishi H (2012) The OsHMA2 transporter is involved in root-to-shoot translocation of Zn and Cd in rice. Plant Cell Environ 35:1948–1957. doi: 10.1111/j.1365-3040.2012.02527.x CrossRefPubMedGoogle Scholar
  22. Tanaka K, Fujimaki S, Fujiwara T, Yoneyama T, Hayashi H (2007) Quantitative estimation of the contribution of the phloem in cadmium transport to grains in rice plants (Oryza sativa L.). Soil Sci Plant Nutr 53:72–77. doi: 10.1111/j.1747-0765.2007.00116.x CrossRefGoogle Scholar
  23. Ueno D, Yamaji N, Kono I, Huang CF, Ando T, Yano M, Ma JF (2010) Gene limiting cadmium accumulation in rice. Proc Natl Acad Sci USA 107:16500–16505. doi: 10.1073/pnas.1005396107 CrossRefPubMedPubMedCentralGoogle Scholar
  24. Uraguchi S, Mori S, Kuramata M, Kawasaki A, Arao T, Ishikawa S (2009) Root-to-shoot Cd translocation via the xylem is the major process determining shoot and grain cadmium accumulation in rice. J Exp Bot 60:2677–2688. doi: 10.1093/jxb/erp119 CrossRefPubMedPubMedCentralGoogle Scholar
  25. Uraguchi S, Kamiya T, Sakamoto T, Kasai K, Sato Y, Nagamura Y, Yoshida A, Kyozuka J, Ishikawa S, Fujiwara T (2011) Low-affinity cation transporter (OsLCT1) regulates cadmium transport into rice grains. Proc Natl Acad Sci USA 108:20959–20964. doi: 10.1073/pnas.1116531109 CrossRefPubMedPubMedCentralGoogle Scholar
  26. Valipour M (2014) Future of the area equipped for irrigation. Arch Agron Soil Sci 60:1641–1660. doi: 10.1080/03650340.2014.905675 Google Scholar
  27. Valipour M (2015a) Future of agricultural water management in Africa. Arch Agron Soil Sci 61:907–927. doi: 10.1080/03650340.2014.961433 CrossRefGoogle Scholar
  28. Valipour M (2015b) A comprehensive study on irrigation management in Asia and Oceania. Arch Agron Soil Sci 61:1247–1271. doi: 10.1080/03650340.2014.905675 CrossRefGoogle Scholar
  29. Valipour M, Ziatabar Ahmadi M, Raeini-Sarjaz M, Gholami Sefidkouhi MA, Shahnazari A, Fazlola R, Darzi-Naftchali A (2015) Agricultural water management in the world during past half century. Arch Agron Soil Sci 61:657–678. doi: 10.1080/03650340.2014.944903 CrossRefGoogle Scholar
  30. Watanabe T, Shimbo S, Nakatsuka H, Koizumi A, Higashikawa K, Matsuda-Inoguchi N, Ikeda M (2004) Gender-related difference, geographical variation and time trend in dietary cadmium intake in Japan. Sci Total Environ 329:17–27. doi: 10.1016/j.scitotenv.2004.03.010 CrossRefPubMedGoogle Scholar
  31. Yamaji N, Xia J, Mitani-Ueno N, Yokosho K, Feng Ma J (2013) Preferential delivery of zinc to developing tissues in rice is mediated by P-type heavy metal ATPase OsHMA2. Plant Physiol 162:927–939. doi: 10.1104/pp.113.216564 CrossRefPubMedPubMedCentralGoogle Scholar
  32. Zhou H, Zeng M, Zhou X, Liao BH, Liu J, Lei M, Zhong QY, Zeng H (2013) Assessment of heavy metal contamination and bioaccumulation in soybean plants from mining and smelting areas of southern Hunan Province, China. Environ Toxicol Chem 32:2719–2727. doi: 10.1002/etc.2389 CrossRefPubMedGoogle Scholar
  33. Zhou H, Zeng M, Zhou X, Liao B, Peng P, Hu M, Zhu W, Wu Y, Zou Z (2015) Heavy metal translocation and accumulation in iron plaques and plant tissues for 32 hybrid rice (Oryza sativa L.) cultivars. Plant Soil 386:317–329. doi: 10.1007/s11104-014-2268-5 CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2016

Authors and Affiliations

  • Quan Zhou
    • 1
  • Guo-Sheng Shao
    • 1
  • Ying-Xing Zhang
    • 1
  • Qing Dong
    • 1
  • Hong Wang
    • 1
  • Shi-Hua Cheng
    • 1
  • Li-Yong Cao
    • 1
    Email author
  • Xi-Hong Shen
    • 1
    Email author
  1. 1.China National Rice Research InstituteHangzhouChina

Personalised recommendations