Plant Growth Regulation

, Volume 81, Issue 2, pp 345–353 | Cite as

Precocious floral initiation and identification of exact timing of embryo physiological maturity facilitate germination of immature seeds to truncate the lifecycle of pea

  • Federico M. RibaltaEmail author
  • Maria Pazos-Navarro
  • Karen Nelson
  • Kylie Edwards
  • John J. Ross
  • Richard G. Bennett
  • Christine Munday
  • William Erskine
  • Sergio J. Ochatt
  • Janine S. Croser
Original paper


We propose herein a novel single seed descent protocol that has application across a broad phenotypic range of pea genotypes. Manipulation of key in vivo growing conditions, including light, photoperiod and temperature, combined with precocious in vitro germination of the embryo at full physiological maturity substantially shortened the pea lifecycle. We define full embryo physiological maturity as the earliest point in seed development when precocious in vitro germination and robust seedling growth can be reliably achieved without supply of exogenous hormones. Under our optimised conditions for accelerated plant growth, embryo physiological maturity was attained at c. 18 days after pollination, when seed moisture content was below 60 % and sucrose level under 100 mg g−1 DW. No delay penalty in terms of time to flowering and plant development was caused by the culture of immature seeds 18 days after pollination compared to the used of mature ones. Determining the role embryo maturity plays in the fitness of the germinated plant has facilitated the truncation of the lifecycle across pea genotypes. The accelerated single seed descent system proposed within this research will benefit complex genetic studies via the rapid development of recombinant inbred lines (RIL) and multi-parental advanced generation intercrosses (MAGIC) populations.


Early floral onset Embryo physiological maturity Pisum sativum L. Precocious seed germination Seed moisture content Seed sucrose content 



This work was supported by the Grains Research and Development Corporation [UWA00159]. We thank Mr. R. Creasy, Mr B. Piasini and Mr. L. Hodgson for glasshouse expertise and Dr Tony Leonforte (pea breeder, Pulse Breeding Australia) for assisting in germplasm selection and seed supply.


  1. Brim CA (1966) A modified pedigree method of selection in soybeans. Crop Sci 6:220CrossRefGoogle Scholar
  2. Cavanagh C, Morell M, Mackay I, Powell W (2008) From mutations to MAGIC: resources for gene discovery, validation and delivery in crop plants. Curr Opin Plant Biol 11:215–221CrossRefPubMedGoogle Scholar
  3. Cerdan PD, Chory J (2003) Regulation of flowering time by light quality. Nature 423:881–885CrossRefPubMedGoogle Scholar
  4. Croser JS, Lulsdorf MM, Davies PA, Clarke HJ, Bayliss KL, Mallikarjuna N, Siddique KHM (2006) Toward doubled haploid production in the Fabaceae: progress, constraints, and opportunities. Crit Rev Plant Sci 25:139–157CrossRefGoogle Scholar
  5. Cummings IG, Reid JB, Koutoulis A (2007) Red to far-red ratio correction in plant growth chambers—growth responses and influence of thermal load on garden pea. Physiol Plantarum 131:171–179Google Scholar
  6. Ellis RH, Hong TD, Roberts EH (1987) The development of desiccation-tolerance and maximum seed quality during seed maturation in six grain legumes. Ann Bot 59:23–29Google Scholar
  7. Franklin G, Pius PK, Ignacimuthu S (2000) Factors affecting in vitro flowering and fruiting of green pea (Pisum sativum L.) Euphytica 115:65–74CrossRefGoogle Scholar
  8. Gallardo K, Le Signor C, Vandekerckhove J, Thompson RD, Burstin J (2003) Proteomics of Medicago truncatula seed development establishes the time frame of diverse metabolic processes related to reserve accumulation. Plant Physiol 133:664–682CrossRefPubMedPubMedCentralGoogle Scholar
  9. Gallardo K, Thompson R, Burstin J (2008) Reserve accumulation in legume seeds. CR Biol 331:755–762CrossRefGoogle Scholar
  10. Germanà MA (2011) Anther culture for haploid and doubled haploid production. Plant Cell Tiss Org Cult 104:283–300CrossRefGoogle Scholar
  11. Goulden CH (1939) Problems in plant selection. In: Burnett RC (ed) Proceeding of the Seventh Genetic Congress. Cambridge University Press, England, pp 132–133Google Scholar
  12. Hay FR, Smith RD, Ellis RH, Butler LH (2010) Developmental changes in the germinability, desiccation tolerance, hardseededness, and longevity of individual seeds of Trifolium ambiguum. Ann Bot 105:1035–1052CrossRefPubMedPubMedCentralGoogle Scholar
  13. Iannucci A, Terribile MR, Martiniello P (2008) Effects of temperature and photoperiod on flowering time of forage legumes in a Mediterranean environment. Field Crop Res 1006:156–162CrossRefGoogle Scholar
  14. Le Deunff Y, Rachidian Z (1988) Interruption of water delivery at physiological maturity is essential for seed development, germination and seedling growth in pea (Pisum sativum L.) J Exp Bot 39:1221–1230CrossRefGoogle Scholar
  15. Maluszynski M, Kasha KJ, Szarejko I (2003) Published doubled haploid protocols in plant species. In: Maluszynski M, Kasha KJ, Forster BP, Szarejko I (eds) Doubled haploid production in crop plants. A manual. Kluwer, Dordrecht, pp 309–335CrossRefGoogle Scholar
  16. Mason MG, Ross JJ, Babst BA, Wienclaw BN, Beveridge CA (2014) Sugar demand, not auxin, is the initial regulator of apical dominance. Proc Natl Acad Sci 111:6092–6097CrossRefPubMedPubMedCentralGoogle Scholar
  17. Moe R, Heins R (1990) Control of plant morphogenesis and flowering by light quality and temperature. Acta Hortic 272:81–89CrossRefGoogle Scholar
  18. Murashige T, Skoog F (1962) A revised medium for rapid growth and bio assays with tobacco tissue cultures. Physiol Plantarum 15:473–497CrossRefGoogle Scholar
  19. Murfet IC, Reid JB (1974) Flowering in Pisum: the influence of photoperiod and vernalising temperatures on the expression of genes Lf and Sn. Z Pflanzenphysiol 71:323–331CrossRefGoogle Scholar
  20. Nelson MN, Berger JD, Erskine W (2010) Flowering time control in annual legumes: prospects in a changing global climate. CAB Rev: Perspect Agr Vet Sci Nutr Natur Resour 5:49–62CrossRefGoogle Scholar
  21. Noguero M, Atif RM, Ochatt S, Thompson RD (2013) The role of the DNA-binding One Zinc Finger (DOF) transcription factor family in plants. Plant Sci 209:32–45CrossRefPubMedGoogle Scholar
  22. Ochatt SJ (2015) Agroecological impact of an in vitro biotechnology approach of embryo development and seed filling in legumes. Agron Sustain Dev 35:535–552CrossRefGoogle Scholar
  23. Ochatt SJ, Sangwan RS (2010) In vitro flowering and seed set: acceleration of generation cycles. In: Davey MR, Anthony P (eds) Plant cell culture: essential methods. John Wiley & Sons, Ltd., Chichester, pp 97–110CrossRefGoogle Scholar
  24. Ochatt SJ, Sangwan RS, Marget P, Ndong YA, Rancillac M, Perney P (2002) New approaches towards the shortening of generation cycles for faster breeding of protein legumes. Plant Breeding 121:436–440CrossRefGoogle Scholar
  25. Redden B, Leonforte T, Ford R, Croser J, Slattery J (2005) Pea (Pisum sativum L.). In: Singh RJ, Jauhar PP (eds) Genetic resources, chromosome engineering, and crop improvement, vol 1. Taylor & Francis, Boca Raton, pp 49–83Google Scholar
  26. Ribalta FM, Croser JS, Erskine W, Finnegan PM, Lulsdorf MM, Ochatt SJ (2014) Antigibberellin-induced reduction of internode length favors in vitro flowering and seed-set in different pea genotypes. Biol Plant 58:39–46CrossRefGoogle Scholar
  27. Runkle ES, Heins RD (2001) Specific functions of red, far red, and blue light in flowering and stem extension of long-day plants. J Amer Soc Hort Sci 126:275–282Google Scholar
  28. Spalding EP, Folta KM (2005) Illumination topics in plant photobiology. Plant Cell Environ 28:39–53CrossRefGoogle Scholar
  29. Sultan SE (2000) Phenotypic plasticity for plant development, function and life history. Trends Plant Sci 5:537–542CrossRefPubMedGoogle Scholar
  30. Summerfield RJ, Roberts EH, Erskine W, Ellis RH (1985) Effects of temperature and photoperiod on flowering in lentils (Lens culinaris Medic.) Ann Bot 56:659–671Google Scholar
  31. Udomdee W, Wen PJ, Lee CY, Chin SW, Chen FC (2014) Effect of sucrose concentration and seed maturity on in vitro germination of Dendrobium nobile hybrids. Plant Growth Regul 72:249–255CrossRefGoogle Scholar
  32. Vadez V, Berger JD, Warkentin T, Asseng S, Ratnakumar P, Rao KP, Gaur P, Munier-Jolain N, Larmure A, Voisin A-S, Sharma H, Pande S, Sharma M, Krishnamurthy L, Zaman M (2012) Adaptation of grain legumes to climate change: a review. Agron Sustain Dev 32:31–44CrossRefGoogle Scholar
  33. Valipour M, Ahmadi MZ, Raeini-Sarjaz M, Sefidkouhi MAG, Shahnazari A, Fazlola R, Darzi-Naftchali A (2015) Agricultural water management in the world during past half century. Arc Agron Soil Sci 61:657–678CrossRefGoogle Scholar
  34. Vince-Prue D (1981) Daylight and photoperiodism. In: Smith H (ed) Plants and the daylight spectrum. Academic Press Inc., London, pp 223–242Google Scholar
  35. Weber H, Heim U, Golombek S, Borisjuk L, Manteuffel R, Wobus U (1998) Expression of a yeast-derived invertase in developing cotyledons of Vicia narbonensis alters the carbohydrate state and affects storage functions. Plant J 16:163–172CrossRefPubMedGoogle Scholar
  36. Weber H, Borisjuk L, Wobus U (2005) Molecular physiology of legume seed development. Annu Rev Plant Biol 56:253–279CrossRefPubMedGoogle Scholar
  37. Weller JL, Murfet IC, Reid JB (1997) Pea mutants with reduced sensitivity to far-red light define an important role for phytochrome A in day-length detection. Plant Physiol 114:1225–1236CrossRefPubMedPubMedCentralGoogle Scholar
  38. Zhang J, Lechowicz MJ (1994) Correlation between time of fowering and phenotypic plasticity in Arabidopsis thaliana (Brassicaceae). Am J Bot 81:1336–1342CrossRefGoogle Scholar
  39. Zhou Y, Singh BR (2002) Red light stimulates flowering and anthocyanin biosynthesis in American cranberry. Plant Growth Regul 38:165–171CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2016

Authors and Affiliations

  • Federico M. Ribalta
    • 1
    Email author
  • Maria Pazos-Navarro
    • 1
  • Karen Nelson
    • 1
  • Kylie Edwards
    • 1
  • John J. Ross
    • 2
  • Richard G. Bennett
    • 1
  • Christine Munday
    • 1
  • William Erskine
    • 1
  • Sergio J. Ochatt
    • 3
  • Janine S. Croser
    • 1
  1. 1.Centre for Plant Genetics and BreedingThe University of Western AustraliaCrawleyAustralia
  2. 2.School of Biological SciencesUniversity of TasmaniaHobartAustralia
  3. 3.Agroécologie, AgroSup Dijon, INRAUniv. Bourgogne Franche-ComtéDijonFrance

Personalised recommendations