Advertisement

Plant Growth Regulation

, Volume 81, Issue 2, pp 317–324 | Cite as

High-throughput sequencing-based analysis of the composition and diversity of endophytic bacterial community in seeds of “Beijing” hybrid maize planted in China

  • Yang Liu
  • Ronghuan Wang
  • Yinhu Li
  • Yanhua Cao
  • Chuanyong Chen
  • Chuangzhao Qiu
  • Feirong Bai
  • Tianjun Xu
  • Xin Zhang
  • Wenkui DaiEmail author
  • Jiuran ZhaoEmail author
  • Chi ChengEmail author
Original paper

Abstract

Maize (Zea mays L.) is the largest food crops in China with the plangting area and total yield of 37.076 million hectares and 215.67 million tons respectively in 2014. The technology of cross breeding was the primary method to cultivate new maize varieties and promote the yield level. In recent years, more and more agriculturalists discovered the existence of endophyte in maize and their close relationship with soil environmental adaption which affect the production of maize. In this study, the seeds of six different maize varieties which were self-developed and cultivated from capital city of China “Beijing” and extensively planted in China were collected, this is the first time to acquire all of the “Beijing” hybrid maize to investigate their endopytes. We clarified eight species exists in all the varieties and the relative abundance of top three species including Pantoea agglomerans, Enterobacter cloacae and Aeribacillus pallidus taken about 60 % of the whole endophyte. Besides these, we also discovered the correlations between the endophytic bacteria which might affect the growth of maize. On the other hand, the distributions of E. cloacae and A. pallidus between maize varieties with different male parent were apparently different. So we deduced the endophyte affect the environmental adaptation of different maize varieties and the results showed the light on the future maize variety cultivation from the angle of endophyte.

Keywords

Beijing Maize seed Endophyte Diversity Pantoea agglomerans 

Notes

Acknowledgments

This work was supported by the Beijing Nova Program (No. Z141105001814095), the Beijing Nova Interdisciplinary Cooperational Program (No. Z1511000003150150), the National Natural Science Foundation of China (No. 31300008), the Chinese Postdoctoral Science Foundation (No. 2015M570969), the Project supported by Beijing Postdoctoral Research Foundation, the Fund of National Infrastructure of Microbial Resources (No. NIMR2016-4), and the Scientific and Technological Development Project of China National Research Institute of Food and Fermentation Industries (No. 2012KJFZ-BS-01). We also thank Dr. Zhengqiu Cai at Brigham and Women’s Hospital (USA) for assistance with the English.

Supplementary material

10725_2016_208_MOESM1_ESM.ppt (547 kb)
Supplementary material 1 (PPT 547 KB)

References

  1. Abraham J, Silambarasan S (2015) Plant growth promoting bacteria Enterobacter asburiae JAS5 and Enterobacter cloacae JAS7 in mineralization of endosulfan. Appl Biochem Biotechnol 175(7):3336–3348CrossRefPubMedGoogle Scholar
  2. Adesemoye AO, Torbert HA, Kloepper JW (2009) Plant growth-promoting rhizobacteria allow reduced application rates of chemical fertilizers. Microb Ecol 58:921–929CrossRefPubMedGoogle Scholar
  3. Bakker MG, Manter DK, Sheflin AM, Weir TL, Vivanco JM (2012) Harnessing the rhizosphere microbiome through plant breeding and agricultural management. Plant Soil 360:1–13CrossRefGoogle Scholar
  4. Berendsen RL, Pieterse CM, Bakker PA (2012) The rhizosphere microbiome and plant health. Trends Plant Sci 17(8):478–486CrossRefPubMedGoogle Scholar
  5. Berg G (2009) Plant–microbe interactions promoting plant growth and health: perspectives for controlled use of microorganisms in agriculture. J Appl Microbiol Biotechnol 84:11–18. doi: 10.1007/s00253-009-2092-7 CrossRefGoogle Scholar
  6. Berg G, Grube M, Schloter M, Smalla K (2014) Unraveling the plant microbiome: looking back and future perspectives. Front Microbiol 5:148PubMedPubMedCentralGoogle Scholar
  7. Blaser M, Bork P, Fraser C, Knight R, Wang J (2013) The microbiome explored: recent insights and future challenges. Nat Rev Microbiol 11:213–217. doi: 10.1038/nrmicro2973 CrossRefPubMedGoogle Scholar
  8. Bloemberg GV, Lugtenberg BJJ (2001) Molecular basis of plant growth promotion and biocontrol by rhizobacteria. Curr Opin Plant Biol 4:343–350CrossRefPubMedGoogle Scholar
  9. Bonfante P (2010) Plant-fungal interactions in mycorrhizas. In: Encyclopedia of Life Sciences. Wiley, New JersyGoogle Scholar
  10. Bulgarelli D, Schlaeppi K, Spaepen S, Ver Loren van Themaat E, Schulze-Lefert P (2013) Structure and functions of the bacterial microbiota of plants. Annu Rev Plant Biol 64: 807–838.CrossRefPubMedGoogle Scholar
  11. Edgar RC (2013) UPARSE: highly accurate OTU sequences from microbial amplicon reads. Nat Methods 10(10):996–998CrossRefPubMedGoogle Scholar
  12. Edwards J, Johnson C, Santos-Medellin C, Lurie E, Podishetty NK, Bhatnagar S, Eisen JA, Sundaresan V (2015) Structure, variation, and assembly of the root-associated microbiomes of rice. Proc Natl Acad Sci USA 112(8):E911–E920CrossRefPubMedPubMedCentralGoogle Scholar
  13. Ferrara FID, Oliveira ZM, Gonzales HHS, Floh EIS, Barbosa HR (2012) Endophytic and rhizospheric enterobacteria isolated from sugar cane have different potentials for producing plant growth-promoting substances. Plant Soil 353:409–417CrossRefGoogle Scholar
  14. Fischer D, Pfitzner B, Schmid M, Simões-Araújo JL, Reis VM, Pereira W, Ormeño-Orrillo E, Hai B, Hofmann A, Schloter M, Martinez-Romero E, Baldani JI, Hartmann A (2012) Molecular characterisation of the diazotrophic bacterial community in uninoculated and inoculated field-grown sugarcane (Saccharum sp.) Plant Soil 356:83–99CrossRefGoogle Scholar
  15. Gond SK, Torres MS, Bergen MS, Helsel Z, White JF Jr (2015) Induction of salt tolerance and up-regulation of aquaporin genes in tropical maize by rhizobacterium Pantoea agglomerans. Lett Appl Microbiol 60(4):392–399CrossRefPubMedGoogle Scholar
  16. James EK (2000) Nitrogen fixation in endophytic and associative symbiosis. Field Crop Res 65:197–209CrossRefGoogle Scholar
  17. James EK, Olivares FL (1998) Infection and colonization of sugar cane and other graminaceous plants by endophytic diazotrophs. Crit Rev Plant Sci 17:77–119CrossRefGoogle Scholar
  18. James EK, Gyaneshwar P, Mathan N, Barraquio QL, Reddy PM, Iannetta PPM, Olivares FL, Ladha JK (2002) Infection and colonization of rice seedlings by the plant growth-promoting bacterium Herbaspirillum seropedicae Z67. Mol Plant Microbe Interact 15:894–906CrossRefPubMedGoogle Scholar
  19. Lebeis SL, Rott M, Dangl JL, Schulze-Lefert P (2012) Culturing a plant microbiome community at the cross-rhodes. New Phytol 196:341–344CrossRefPubMedGoogle Scholar
  20. Liu Y, Zuo S, Xu LW, Zou YY, Song W (2012) Study on diversity of endophytic bacterial communities in seeds of hybrid maize and their parental lines. Arch Microbiol 194:1001–1012CrossRefPubMedGoogle Scholar
  21. Lugtenberg B, Kamilova F (2009) Plant-growth promoting rhizobacteria. Annu Rev Microbiol 63:541–556. doi: 10.1146/annurev.micro.62.081307.162918 CrossRefPubMedGoogle Scholar
  22. Lundberg DS, Lebeis SL, Paredes SH, Yourstone S, Gehring J, Malfatti S, Tremblay J, Engelbrektson A, Kunin V, del Rio TG, Edgar RC, Eickhorst T, Ley RE, Hugenholtz P, Tringe SG, Dangl JL (2012) Defining the core Arabidopsis thaliana root microbiome. Nature 488(7409):86–90CrossRefPubMedPubMedCentralGoogle Scholar
  23. Martínez-Rodríguez JC, De la Mora-Amutio M, Plascencia-Correa LA, Audelo-Regalado E, Guardado FR, Hernández-Sánchez E, Peña-Ramírez YJ, Escalante A, Beltrán-García MJ, Ogura T (2015) Cultivable endophytic bacteria from leaf bases of Agave tequilana and their role as plant growth promoters. Braz J Microbiol 45(4):1333–1339CrossRefPubMedCentralGoogle Scholar
  24. Mitter B, Petric A, Shin MW, Chain PS, Hauberg-Lotte L, Reinhold-Hurek B (2013) Comparative genome analysis of Burkholderia phytofirmans PsJN reveals a wide spectrum of endophytic lifestyles based on interaction strategies with host plants. Front Plant Sci 4:120. doi: 10.3389/fpls.2013.00120 CrossRefPubMedPubMedCentralGoogle Scholar
  25. Monteiro RA, Balsanelli E, Wassem R, Marin AM, Brusamarello-Santos LCC, Schmidt MA, Tadra-Sfeir MZ, Pankievicz VCS, Cruz LM, Chubatsu LS, Pedrosa FO, Souza EM (2012) Herbaspirillum-plant interactions: microscopical, histological and molecular aspects. Plant Soil 356:175–196CrossRefGoogle Scholar
  26. Philippot L, Hallin S, Borjesson G, Baggs EM (2009) Biochemical cycling in the rhizosphere having an impact on global change. Plant Soil 321:61–81CrossRefGoogle Scholar
  27. Radha TK, Rao DL (2014) Plant growth promoting bacteria from cow dung based biodynamic preparations. Indian J Microbiol 54(4):413–418CrossRefPubMedPubMedCentralGoogle Scholar
  28. Reinhold-Hurek B, Hurek T (2011) Living inside plants: bacterial endophytes. Curr Opin Plant Biol 14:435–443. doi: 10.1016/j.pbi.2011.04.004 CrossRefPubMedGoogle Scholar
  29. Ryan RP, Germaine K, Franks A, Ryan DJ, Dowling DN (2008) Bacterial endophytes: recent developments and applications. FEMS Microbiol Lett 278:1–9. doi: 10.1111/j.1574-6968.2007.00918.x CrossRefPubMedGoogle Scholar
  30. Schloss PD, Westcott SL, Ryabin T, Hall JR, Hartmann M, Hollister EB, Lesniewski RA, Oakley BB, Parks DH, Robinson CJ, Sahl JW, Stres B, Thallinger GG, Van Horn DJ, Weber CF (2009) Introducing mothur: open-source, platform-independent, community-supported software for describing and comparing microbial communities. Appl Environ Microbiol 75(23):7537–7541CrossRefPubMedPubMedCentralGoogle Scholar
  31. Sessitsch A, Hardoim P, Doring J, Weilharter A, Krause A, Woyke T, Mitter B, Hauberg-Lotte L, Friedrich F, Rahalkar M, Hurek T, Sarkar A, Bodrossy L, van Overbeek L, Brar D, van Elsas JD, Reinhold-Hurek B (2012) Functional characteristics of an endophyte community colonizing rice roots as revealed by metagenomic analysis. Mol Plant Microbe Interact 25:28–36CrossRefPubMedGoogle Scholar
  32. Singh BK, Bardgett RD, Smith P, Reay DS (2010) Microorganisms and climate change: terrestrial feedbacks and mitigation options. Nat Rev Microbiol 8:779–790CrossRefPubMedGoogle Scholar
  33. Suarez-Moreno ZR, Caballero-Mellado J, Coutinho BG, Mendonca-Previato L, James EK, Venturi V (2012) Common features of environmental and potentially beneficial plant-associated Burkholderia. Microb Ecol 63:249–266CrossRefPubMedGoogle Scholar
  34. Turner TR, James EK, Poole PS (2013) The plant microbiome. Genome Biol 14(6):209CrossRefPubMedPubMedCentralGoogle Scholar
  35. Van Overbeek L, van Doorn J, Wichers J, van Amerongen A, van Roermund H, Willemsen P (2014) The arable ecosystem as battleground for emergence of new human pathogens. Front Microbiol 5:104. doi: 10.3389/fmicb.2014.00104.PubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2016

Authors and Affiliations

  • Yang Liu
    • 1
    • 2
  • Ronghuan Wang
    • 1
  • Yinhu Li
    • 3
  • Yanhua Cao
    • 2
  • Chuanyong Chen
    • 1
  • Chuangzhao Qiu
    • 3
  • Feirong Bai
    • 2
  • Tianjun Xu
    • 1
  • Xin Zhang
    • 2
  • Wenkui Dai
    • 3
    Email author
  • Jiuran Zhao
    • 1
    Email author
  • Chi Cheng
    • 2
    Email author
  1. 1.Maize Research CenterBeijing Academy of Agriculture and Forestry SciencesBeijingPeople’s Republic of China
  2. 2.China Center of Industrial Culture CollectionChina National Research Institute of Food and Fermentation IndustriesBeijingPeople’s Republic of China
  3. 3.Department of Microbial ResearchBGI ShenzhenShenzhenPeople’s Republic of China

Personalised recommendations