Advertisement

Plant Growth Regulation

, Volume 78, Issue 1, pp 69–77 | Cite as

Cloning and functional analysis of pale-green leaf (PGL10) in rice (Oryza sativa L.)

  • Yao-Long Yang
  • Jie Xu
  • Yu-Chun Rao
  • Yong-Jun Zeng
  • Hui-Juan Liu
  • Ting-Ting Zheng
  • Guang-Heng Zhang
  • Jiang Hu
  • Long-Biao Guo
  • Qian Qian
  • Da-Li ZengEmail author
  • Qing-Hua ShiEmail author
Original Paper

Abstract

Leaf color mutants commonly found in rice have important implications in basic research and breeding science. In this study, we isolated a pale-green leaf mutant (pgl10) from the offspring of the rice cultivar Nipponbare (Oryza sativa L. spp. japonica) through ethyl methanesulfonate mutagenesis. Compared with the wild-type Nipponbare, the pgl10 mutant had phenotypically pale-green leaves with significantly decreased chlorophyll (a and b) and carotenoid contents. Transmission electron micrographs showed that pgl10 had less grana lamellae of chloroplasts than Nipponbare. The results of tissue-specific gene expression analysis revealed that pgl10 was expressed in various rice organs, including roots, stems, leaves, sheaths, and spikes. The expression of Chl synthesis-associated gene in pgl10 was decreased. Genetic analysis suggested that PGL10 was controlled by a recessive gene. Map-based cloning and genome sequencing data showed that pgl10 was a frameshift mutation caused by a single base insertion on chromosome 10. Bioinformation analysis indicated that PGL10 encoded protochlorophyllide oxidoreductase B. Therefore, pgl10 can be a genetic material for further studies on PGL10.

Keywords

Rice (Oryza sativa L.) Pale-green leaf (PGL10Map-based cloning 

Notes

Acknowledgments

This work was supported by Grants from the State Key Basic Research Program (2013CBA01403), the Ministry of Agriculture of China for transgenic research (No. 2013ZX08009003-001) and the National Natural Science Foundation of China (31171531, 31221004).

Supplementary material

10725_2015_75_MOESM1_ESM.doc (41 kb)
Supplementary material 1 (DOC 41 kb)

References

  1. Agrawal GK, Yamazaki M, Kobayashi M, Hirochika R, Miyao A, Hirochika H (2001) Screening of the rice viviparous mutants generated by endogenous retrotransposon Tos17 insertion. Tagging of a zeaxanthin epoxidase gene and a novel OsTATC gene. Plant Physiol 125:1248–1257. doi: 10.1104/pp.125.3.1248 CrossRefPubMedPubMedCentralGoogle Scholar
  2. Arnon DI (1949) Copper enzymes in isolated chloroplasts. Polyphenoloxidase in Beta vulgaris. Plant Physiol 24:1–15CrossRefPubMedPubMedCentralGoogle Scholar
  3. Chen XF, Hao L, Pan JW, Zheng XX, Jiang GH, Jin Y, Gu ZM, Qian Q, Zhai WX, Ma BJ (2012) SPL5, a cell death and defense-related gene, encodes a putative splicing factor 3b subunit 3 (SF3b3) in rice. Mol Breed 30:939–949. doi: 10.1007/s11032-011-9677-4 CrossRefGoogle Scholar
  4. Feng BH, Yang Y, Shi YF, Lin L, Chen J, Wei YL, Leung H, Wu JL (2013) Genetic analysis and gene mapping of light brown spotted leaf mutant in rice. Rice Sci 20:13–18. doi: 10.1016/S1672-6308(13)60102-X CrossRefGoogle Scholar
  5. Goff SA (1999) Rice as a model for cereal genomics. Curr Opin Plant Biol 2:86–89. doi: 10.1016/S1369-5266(99)80018-1 CrossRefPubMedGoogle Scholar
  6. Goff SA, Ricke D, Lan TH, Presting G, Wang R, Dunn M, Glazebrook J, Sessions A, Oeller P, Varma H, Hadley D, Hutchison D, Martin C, Katagiri F, Lange BM, Moughamer T, Xia Y, Budworth P, Zhong J, Miguel T, Paszkowski U, Zhang S, Colbert M, Sun WL, Chen L et al (2002) A draft sequence of the rice genome (Oryza sativa L. ssp. japonica). Science 296:92–100. doi: 10.1126/science.1068275 CrossRefPubMedGoogle Scholar
  7. Goh CH, Satoh K, Kikuchi S, Kim SC, Ko SM, Kang HG, Jeon JS, Kim CS, Park YL (2010) Mitochondrial activity in illuminated leaves of chlorophyll-deficient mutant rice (OsCHLH) seedlings. Plant Biotechnol Rep 4:281–291. doi: 10.1007/s11816-010-0146-z CrossRefGoogle Scholar
  8. Gustafsson A (1940) The mutation system of the chlorophyll apparatus. Acta Univ Lund 36:1–40Google Scholar
  9. Han SH, Sakuraba Y, Koh HJ, Paek NC (2012) Leaf variegation in the rice zebra2 mutant is caused by photoperiodic accumulation of tetra-Cis-lycopene and singlet oxygen. Mol Cells 33:89–97. doi: 10.1007/s10059-012-2218-0 Google Scholar
  10. He B, Liu LL, Zhang WW, Wan JM (2006) Leaf color mutants in plant. Plant Physiol Commun 42:1–9Google Scholar
  11. Jiang HW, Li MR, Liang NT, Yan HB, Wei YB, Xu XL, Liu J, Xu ZF, Chen F, Wu GJ (2007) Molecular cloning and function analysis of the stay green gene in rice. Plant J 52:197–209. doi: 10.1111/j.1365-313X.2007.03221.x CrossRefPubMedGoogle Scholar
  12. Kusaba M, Ito H, Morita R, Lida S, Sato Y, Fujimoto M, Kawasaki S, Tanaka R, Hirochika H, Nishimura M, Tanaka A (2007) Rice NON-YELLOW COLORING1 is involved in light-harvesting complex II and grana degradation during leaf senescence. Plant Cell 19:1362–1375. doi: 10.1105/tpc.106.042911
  13. Kusumi K, Sakata C, Nakamura T, Kawasaki S, Yoshimura A, Iba K (2011) A plastid protein NUS1 is essential for build-up of the genetic system for early chloroplast development under cold stress conditions. Plant J 68:1039–1050. doi: 10.1111/j.1365-313X.2011.04755.x CrossRefPubMedGoogle Scholar
  14. Lee S, Kim JH, Yoo E, Lee CH, Hirochika H, An GH (2005) Differential regulation of chlorophyll a oxygenase genes in rice. Plant Mol Biol 57:805–818. doi: 10.1007/s11103-005-2066-9 CrossRefPubMedGoogle Scholar
  15. Mitchell PL, Sheehy JE (2006) Supercharging rice photosynthesis to increase yield. New Phytol 171:688–693. doi: 10.1111/j.1469-8137.2006.01855.x CrossRefPubMedGoogle Scholar
  16. Pan XW, Li YC, Li XX, Liu WQ, Ming J, Lu TT, Tan J, Sheng XN (2013) Differential regulatory mechanisms of CBF regulon between Nipponbare (Japonica) and 93-11 (Indica) during cold acclimation. Rice Sci 20:165–172. doi: 10.1016/S1672-6308(13)60121-3 CrossRefGoogle Scholar
  17. Park SY, Yu JW, Park JS, Li JJ, Yoo SC, Lee NY, Lee SK, Jeong SW, Seo HS, Koh HJ, Jeon JS, Park YL, Paek NC (2007) The senescence-induced staygreen protein regulates chlorophyll degradation. Plant Cell 19:1649–1664. doi: 10.1105/tpc.106.044891 CrossRefPubMedPubMedCentralGoogle Scholar
  18. Sakuraba Y, Rahman ML, Cho SH, Kim YS, Koh HJ, Yoo SC, Paek NC (2013) The rice faded green leaf locus encodes protochlorophyllide oxidoreductase B and is essential for chlorophyll synthesis under high light conditions. Plant J 74:122–133. doi: 10.1111/tpj.12110 CrossRefPubMedGoogle Scholar
  19. Su NN, Wu Q, Shen ZG, Xia K, Cui J (2014) Effects of light quality on the chloroplastic ultrastructure and photosynthetic characteristics of cucumber seedlings. Plant Growth Regul 73:227–235. doi: 10.1007/s10725-013-9883-7 CrossRefGoogle Scholar
  20. Sugimoto H, Kusumi K, Noguchi K, Yano M, Yoshimura A, Iba K (2007) The rice nuclear gene, VIRESCENT 2, is essential for chloroplast development and encodes a novel type of guanylate kinase targeted to plastids and mitochondria. Plant J 52:512–527. doi: 10.1111/j.1365-313X.2007.03251.x CrossRefPubMedGoogle Scholar
  21. Takai T, Adachi S, Taguchi-Shiobara F, Sanoh-Arai Y, Iwasawa N, Yoshinaga S, Hirose S, Taniguchi Y, Yamanouchi U, Wu J, Matsumoto T, Sugimoto K, Kondo K, Ikka T, Ando T, Kono I, Ito S, Shomura A, Ookawa T, Hirasawa T, Yano M, Kondo M, Yamamoto T (2013) A natural variant of NAL1, selected in high-yield rice breeding programs, pleiotropically increases photosynthesis rate. Sci Rep 3:2149. doi: 10.1038/srep02149 CrossRefPubMedPubMedCentralGoogle Scholar
  22. Wei XD, Shi DW, Chen GX (2013) Physiological, structural, and proteomic analysis of chloroplasts during natural senescence of Ginkgo leaves. Plant Growth Regul 69:191–201. doi: 10.1007/s10725-012-9761-8 CrossRefGoogle Scholar
  23. Wu DX, Shu QY, Xia YW (2002) In vitro mutagenesis induced novel thermo/photoperiod-sensitive genic male sterile indica rice with green-revertible xanthan leaf color marker. Euphytica 123:195–202. doi: 10.1023/A:1014924418395 CrossRefGoogle Scholar
  24. Wu ZM, Zhang X, He B, Diao LP, Sheng SL, Wang JL, Guo XP, Su N, Wang LF, Jiang L, Wang CM, Zhai HQ, Wan JM (2007) A chlorophyll-deficient rice mutant with impaired chlorophyllide esterification in chlorophyll biosynthesis. Plant Physiol 145:29–40. doi: 10.1104/pp.107.100321 CrossRefPubMedPubMedCentralGoogle Scholar
  25. Yamanouchi U, Yano M, Lin H, Ashikari M, Yamada K (2002) A rice spotted leaf gene, Spl7, encodes a heat stress transcription factor protein. Proc Natl Acad Sci USA 99:7530–7535. doi: 10.1073/pnas.112209199 CrossRefPubMedPubMedCentralGoogle Scholar
  26. Yoo SC, Cho SH, Sugimoto H, Li JJ, Kusumi K, Koh HJ, Iba K, Paek NC (2009) Rice Virescent3 and Stripe1 encoding the large and small subunits of ribonucleotide reductase are required for chloroplast biogenesis during early leaf development. Plant Physiol 150:388–401. doi: 10.1104/pp.109.136648 CrossRefPubMedPubMedCentralGoogle Scholar
  27. Yu J, Ricke D, Lan TH, Presting G, Wang R, Dunn M, Glazebrook J, Sessions A, Oeller P, Varma H, Hadley D, Hutchison D, Martin C, Katagiri F, Lange BM, Moughamer T, Xia Y, Budworth P, Zhong J, Miguel T, Paszkowski U, Zhang S, Colbert M, Sun WL, Chen L et al (2002) A draft sequence of the rice genome (Oryza sativa L. ssp. indica). Science 296:79–92. doi: 10.1126/science.1068037 CrossRefPubMedGoogle Scholar
  28. Yuan LP (2014) Development of hybrid rice to ensure food security. Rice Sci 21:1–2. doi: 10.1016/S1672-6308(13)60167-5 CrossRefGoogle Scholar
  29. Zeng LR, Qu SH, Bordeos A, Yang CW, Baraoidan M, Yan HY, Xie Q, Nahm BH, Leung H, Wang GL (2004) Spotted leaf11, a negative regulator of plant cell death and defense, encodes a U-box/armadillo repeat protein endowed with E3 ubiquitin ligase activity. Plant Cell 16:2795–2808. doi: 10.1105/tpc.104.025171 CrossRefPubMedPubMedCentralGoogle Scholar
  30. Zhang HT, Li JJ, Yoo JH, Yoo SC, Cho SH, Koh HJ, Seo HS, Paek NC (2006) Rice chlorina-1 and chlorina-9 encode ChlD and ChlI subunits of Mg-chelatase, a key enzyme for chlorophyll synthesis and chloroplast development. Plant Mol Biol 62:325–337. doi: 10.1007/s11103-006-9024-z CrossRefPubMedGoogle Scholar
  31. Zhang LK, Li ZB, Liu HY, Li RH, Chen MY, Chen AG, Qian YL, Hua ZT, Gao YM, Zhu LH, Li ZK (2010) Study on morphological structure and genetic mapping of two novel leaf color mutants in rice. Sci Agric Sin 43:223–229. doi: 10.3864/j.issn.0578-1752.2010.02.001 Google Scholar
  32. Zhao Y, Wang M, Zhang Y, Du L, Pan T (2000) A chlorophyll-reduced seedling mutant in oilseed rape, Brassica napus, for utilization in F1 hybrid production. Plant Breed 119:131–135. doi: 10.1046/j.1439-0523.2000.00453.x CrossRefGoogle Scholar
  33. Zhu L, Liu WZ, Wu C, Luan WJ, Fu YP, Hu GC, Si HM, Sun ZX (2007) Identification and fine mapping of a gene related to pale green leaf phenotype near the centromere region in rice. Rice Sci 14:172–180CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2015

Authors and Affiliations

  • Yao-Long Yang
    • 1
    • 2
  • Jie Xu
    • 1
    • 2
  • Yu-Chun Rao
    • 3
  • Yong-Jun Zeng
    • 1
  • Hui-Juan Liu
    • 2
  • Ting-Ting Zheng
    • 2
  • Guang-Heng Zhang
    • 2
  • Jiang Hu
    • 2
  • Long-Biao Guo
    • 2
  • Qian Qian
    • 2
  • Da-Li Zeng
    • 2
    Email author
  • Qing-Hua Shi
    • 1
    Email author
  1. 1.Key Laboratory of Crop Physiology, Ecology and Genetic Breeding, Ministry of EducationJiangxi Agricultural UniversityNanchangPeople’s Republic of China
  2. 2.State Key Lab for Rice BiologyChina National Rice Research InstituteHangzhouPeople’s Republic of China
  3. 3.College of Chemistry and Life SciencesZhejiang Normal UniversityJinhuaPeople’s Republic of China

Personalised recommendations