Plant Growth Regulation

, Volume 76, Issue 3, pp 303–313 | Cite as

Effects of Piriformospora indica on the growth, fruit quality and interaction with Tomato yellow leaf curl virus in tomato cultivars susceptible and resistant to TYCLV

  • Huili Wang
  • Jirong Zheng
  • Xueyan Ren
  • Ting Yu
  • Ajit Varma
  • Binggan Lou
  • Xiaodong Zheng
Original paper


Tomato yellow leaf curl virus (TYLCV) resistant cultivar T07-4 and susceptible cultivar T07-1 were inoculated with the root endophytic fungus, Piriformospora indica in greenhouse to study the effects of P. indica inoculation on the tomato growth, early yield, fruit quality and resistance to TYCLV. The results indicated that P. indica stimulated root growth, promoted the growth of tomato plants between 2–6 weeks for T07-1 and 2–4 weeks for T07-4 cultivar after inoculation. The early fruit yield was improved by 12.8 % for susceptible cultivar T07-1, but no significant difference for resistant cultivar T07-4. The taste of fruits are even better because of higher ratio of TSS to TA for two cultivars and P. indica increased TSS and firmness for cultivar T07-1. P. indica enhanced more pathogensis-related genes expressions in inoculated susceptible cultivar T07-1 than in resistant cultivar T07-4 at 2 weeks after inoculation. P. indica induced resistance against TYCLV for susceptible cultivar, reduced TYCLV incidence and decreased disease index by 26 % and 1.25 in natural TYCLV infection. One may draw an inference that P. indica inoculation can lead to better vegetative growth, higher early yield and induced resistance for TYLCV-susceptiable cultivar T07-1 in practical greenhouse condition.


Piriformospora indica Endophytic fungi Tomato yellow curl leaf virus Growth parameters Fruit quality 


P. indica

Piriformospora indica


Arbuscular mycorrhizal fungi


Tomato yellow leaf curl virus


Electrical conductivity


Dry weight


Total soluble solid


Titratable acidity


Ascorbic acid


Ribonucleic acid


Reverse transcription-polymerase chain reaction




Systemic acquired resistance


Salicylic acid


Induced systemic resistance

Supplementary material

10725_2015_25_MOESM1_ESM.docx (16 kb)
Supplementary material 1 (DOCX 16 kb)


  1. Andrade-Linares DR, Muller A, Fakhro A, Schwarz A, Frankan P (2013) Piriformospora indica, Sebacinales and their biotechnological applications. Soil Biol 33:107–117Google Scholar
  2. Deshmukh SD, Kogel KH (2007) Piriformospora indica protects barley from root rot caused by Fusarium graminearum. J Plant Dis Prot 114:263–268Google Scholar
  3. Deshmukh S, Hueckelhoven R, Schafer P, Imani J, Sharma M, Weiss M, Waller F, Kogel KH (2006) The root endophytic fungus Piriformospora indica requires host cell death for proliferation during mutualistic symbiosis with barley. Proc Natl Acad Sci USA 103:18450–18457PubMedCentralPubMedCrossRefGoogle Scholar
  4. Dolatabadi HK, Goltapeh EM, Jaimand K, Rohani N, Varma A (2011) Effects of Piriformospora indica and Sebacina vermifera on growth and yield of essential oil in fennel (Foeniculum vulgare) under greenhouse conditions. J Basic Microbiol 51:33–39PubMedCrossRefGoogle Scholar
  5. Dorais M, Ehret DL, Papadopoulos AP (2008) Tomato (Solanum lycopersicum) health components: from the seed to the consumer. Phytochem Rev 7:231250. doi:10.1007/s11101-007-9085-x Google Scholar
  6. Fakhro A, Andrade-Linares DR, von Bargen S, Bandte M, Buttner C, Grosch R, Schwarz D, Franken P (2010) Impact of Piriformospora indica on tomato growth and on interaction with fungal and viral pathogens. Mycorrhiza 20:191–200PubMedCrossRefGoogle Scholar
  7. Franken P (2012) The plant strengthening root endophyte Piriformospora indica: potential application and the biology behind. Appl Microbiol Biotechnol 96:1455–1464PubMedCentralPubMedCrossRefGoogle Scholar
  8. Franzini VI, Azcon R, Mendes FL, Aroca R (2013) Different interaction among Glomus and Rhizobium species on Phaseolus vulgaris and Zea mays plant growth, physiology and symbiotic development under moderate drought stress conditions. Plant Growth Regul 70:265–273. doi:10.1007/s10725-013-9798-3 CrossRefGoogle Scholar
  9. Friedmann M, Lapidot M, Cohen S, Pilowsky M (1998) A novel source of resistance to tomato yellow leaf curl virus exhibiting a symptomless reaction to viral infection. J Am Soc Hortic Sci 123:1004–1007Google Scholar
  10. Frohlich DR, Torres-Jerez I, Bedford ID, Markham PG, Brown JK (2002) A phylogeographical analysis of the Bemisia tabaci species complex based on mito-chondrial DNA markers. Mol Ecol 8:1683–1691CrossRefGoogle Scholar
  11. Ghanim M, Morin S, Czosnek H (2001) Rate of Tomato yellow leaf curl virus translocation in the circulative transmission pathway of its vector, the whitefly Bemisia tabaci. Phytopathology 91:188–196. doi:10.1094/phyto.2001.91.2.188 PubMedCrossRefGoogle Scholar
  12. Glick E, Levy Y, Gafni Y (2009) The viral etiology of Tomato yellow leaf curl disease—a review. Plant Prot Sci 45:81–97Google Scholar
  13. Guil-Guerrero JL, Rebolloso-Fuentes MM (2009) Nutrient composition and antioxidant activity of eight tomato (Lycopersicon esculentum) varieties. J Food Compos Anal 22:123–129CrossRefGoogle Scholar
  14. Hanssen IM, Lapidot M, Thomma BP (2010) Emerging viral diseases of Tomato crops. Mol Plant Microbe Interact 23:539–548PubMedCrossRefGoogle Scholar
  15. Heber D (2000) Colorful cancer prevention: alpha-carotene, lycopene, and lung cancer. Am J Clin Nutr 72:901–902PubMedGoogle Scholar
  16. Jiang F, Zheng XD, Chen JS (2009) Microarray analysis of gene expression profile induced by the biocontrol yeast Cryptococcus laurentii in cherry tomato fruit. Gene 430:12–16PubMedCrossRefGoogle Scholar
  17. Khatabi B, Molitor A, Lindermayr C, Pfiffi Durner S, Wettstein DV, Kogel KH, Schafer P (2012) Ethylene supports colonization of plant roots by the mutualistic fungus Piriformospora indica. PLos One. 035502.
  18. Kumar Praveen G, Kishore N, Amalraj Daniel EL, Ahmed Hassan SKM, Rasul A, Desai S (2012) Evaluation of fluorescent Pseudomonas spp. with single and multiple PGPR traits for plant growth promotion of sorghum in combination with AM fungi. Plant Growth Regul 67:133–140. doi:10.1007/s10725-012-9670-x CrossRefGoogle Scholar
  19. Liu J, Maldonado-Mendoza I, Lopez-Meyer M, Cheung F, Town CD, Harrison MJ (2007) Arbuscular mycorrhizal symbiosis is accompanied by local and systemic alterations in gene expression and an increase in disease resistance in the shoots. Plant J 50:529–544PubMedCrossRefGoogle Scholar
  20. McGonigle TP, Miller MH, Evans DG, Fairchild GL, Swan JA (1990) A new method which gives an objective measure of colonization of roots by vesicular-arbuscular mycorrhizal fungi. New Phytol 115:495–501CrossRefGoogle Scholar
  21. Mugiira RB, Liu SS, Zhou XP (2008) Tomato yellow leaf curl virus and Tomato leaf curl Taiwan virus invade south-east coast of China. J Phytopathology 156:217–221CrossRefGoogle Scholar
  22. Oelmuller R, Sherameti I, Tripathi S, Varma A (2009) Piriformospora indica, a cultivable root endophyte with multiple biotechnological applications. Symbiosis 49:1–17CrossRefGoogle Scholar
  23. Peškan-Berghöfer T, Shahollari B, Giang PH, Hehl S, Markert C, Blanke V, Varma AK, Oelmüller R (2004) Association of Piriformospora indica with Arabidopsis thaliana roots represents a novel system to study beneficial plant-microbe interactions and involves early plant protein modifications in the endoplasmatic reticulum and at the plasma membrane. Physiol Plant 122:465–477CrossRefGoogle Scholar
  24. Pozo MJ, Azcón-Aguilar C (2007) Unraveling mycorrhiza-induced resistance. Curr Opin Plant Biol 10:393–398PubMedCrossRefGoogle Scholar
  25. Sarma MVRK, Kumar V, Saharan K, Srivastava R, Sharma AK, Prakash A, Sahai V, Bisaria VS (2011) Application of inorganic carrier-based formulations of fluorescent pseudomonads and Piriformospora indica on tomato plants and evaluation of their efficacy. J Appl Microbiol 111:456–466PubMedCrossRefGoogle Scholar
  26. Schafer P, Pfiffi S, Voll L, Zajic D, Chandler P, Waller F, Scholz U, Pons-Kuhnemann J, Sonnewald S, Sonnewald U, Kogel KH (2009) Manipulation of plant innate immunity and gibberellin as factor of compatibility in the mutualistic association of barley roots with Piriformospora indica. Plant J 59:461–474PubMedCrossRefGoogle Scholar
  27. Serfling A, Wirsel SGR, Lind V, Deising HB (2007) Performance of the biocontrol fungus Piriformospora indica on wheat under greenhouse and field conditions. Phytopathology 97:523–531PubMedCrossRefGoogle Scholar
  28. Sherameti I, Shahollari B, Venus Y, Altschmied L, Varma A, Oelmuller R (2005) The endophytic fungus Piriformospora indica stimulates the expression of nitrate reductase and the starch-degrading enzyme glucan–water dikinase in tobacco and Arabidopsis roots through a homeodomain transcription factor which binds to a conserved motif in their promoters. J Biol Chem 280:2641–2647CrossRefGoogle Scholar
  29. Sherameti I, Venus Y, Drzewiecki C, Tripathi S, Dan VM, Nitz I, Varma A, Grundler FM, Oelmuller R (2008) PYK10, a beta-glucosidase located in the endoplasmatic reticulum, is crucial for the beneficial interaction between Arabidopsis thaliana and the endophytic fungus Piriformospora indica. Plant J 54:428–439PubMedCrossRefGoogle Scholar
  30. Shoresh M, Harman GE (2008) The molecular basis of shoot responses of maize seedlings to Trichoderma harzianum T22 inoculation of the root: a proteomic approach. Plant Physiol 147:2147–2163PubMedCentralPubMedCrossRefGoogle Scholar
  31. Shoresh M, Yedidia I, Chet I (2005) Involvement of jasmonic acid/ethylene signalling pathway in the systemic resistance induced in cucumber by Trichoderma asperellum T203. Phytopathology 95:76–84PubMedCrossRefGoogle Scholar
  32. Singh A, Sharma J, Rexer KH, Varma A (2000) Plant productivity determinants beyond minerals, water and light: Piriformospora indica—a revolutionary plant growth promoting fungus. Curr Sci 79:1548–1554Google Scholar
  33. Sirrenberg A, Goebel C, Grond S, Czempinski N, Ratzinger A, Karlovsky P, Santos P, Feussner I, Pawlowski K (2007) Piriformospora indica affects plant growth by auxin production. Physiol Plant 131:581–589PubMedCrossRefGoogle Scholar
  34. Smith S, Read DJ (2008) Mycorrhizal symbiosis. Academic Press, LondonGoogle Scholar
  35. Stein E, Molitor A, Kogel K-H, Waller F (2008) Systemic resistance in Arabidopsis conferred by the mycorrhizal fungus Piriformospora indica requires jasmonic acid signaling and the cytoplasmic function of NPR1. Plant Cell Physiol 49:1747–1751PubMedCrossRefGoogle Scholar
  36. Sun C, Johnson J, Cai DG, Sherameti I, Oelmuller R, Lou BG (2010) Piriformospora indica confers drought tolerance in Chinese cabbage leaves by stimulating antioxidant enzymes, the expression of drought-related genes and the plastid-localized CAS protein. J Plant Physiol 167:1009–1017PubMedCrossRefGoogle Scholar
  37. Tian AM, Cao JS, Huang L, Yu XL, Ye WZ (2009) Characterization of a male sterile related gene BcMF15 from Brassica campestris ssp. chinensis. Mol Biol Rep 36:307–314PubMedCrossRefGoogle Scholar
  38. Toor RK, Savage GP (2005) Antioxidant activity in different fractions of tomatoes. Food Res Int 38:487–494CrossRefGoogle Scholar
  39. Van Loon LC, Bakker PAHM, Pieterse CMJ (1998) Systemic resistance induced by rhizosphere bacteria. Annu Rev Phytopathology 36:453–458CrossRefGoogle Scholar
  40. Van Peer R, Niemann GJ, Schnippers B (1991) Induced resistance and phytoalexin accumulation in biological control of fusarium wilt of carnation by Pseudomonas sp. strain WCS417r. Phytopathology 91:728–734CrossRefGoogle Scholar
  41. Van Wees SCM, Van der Ent S, Pieterse CMJ (2008) Plant immune responses triggered by beneficial microbes. Curr Opin Plant Biol 11:443–448PubMedCrossRefGoogle Scholar
  42. Varma A, Verma S, Sudah SN, Franken P (1999) Piriformospora indica, a cultivable plant growth-promoting root endophyte. Appl Environ Microbiol 65:2741–2744PubMedCentralPubMedGoogle Scholar
  43. Verma S, Varma A, Rexer K-H, Hassel A, Kost G, Sarbhoy A, Bisen P, Bütehorn B, Franken P (1998) Piriformospora indica, gen. nov. sp. nov., a new root-colonizing fungus. Mycologia 90:896–903CrossRefGoogle Scholar
  44. Waller F, Achatz B, Baltruschat H, Fodor J, Becker K, Fischer M, Heier T, Hückelhoven R, Neumann C, von Wettstein D, Franken P, Kogel KH (2005) The endophytic fungus Piriformospora indica reprograms barley to salt-stress tolerance, disease resistance, and higher yield. Proc Natl Acad Sci USA 102:13386–13391PubMedCentralPubMedCrossRefGoogle Scholar
  45. Waller F, Mukherjee K, Deshmukh SD, Achatz B, Sharma M, Schäfer P, Kogel KH (2008) Systemic and local modulation of plant responses by Piriformospora indica and related Sebacinales species. J Plant Physiol 165:60–70PubMedCrossRefGoogle Scholar
  46. Ward ER, Uknes SJ, Williams SC, Dincher SS, Wiederhold DL, Alexander D, Ahl-Goy P, Metraux JP, Ryals JA (1991) Coordinate gene activity in response to agents those induce systemic acquired resistance. Plant Cell 3:1085–1094PubMedCentralPubMedCrossRefGoogle Scholar
  47. Wei G, Kloepper JW, Tuzun S (1991) Induction of systemic resistance of cucumber to Colletotrichum orbiculare by selected strains of plant-growth promoting rhizobacteria. Phytopathology 81:1508–1512CrossRefGoogle Scholar
  48. Wright KP, Kader AA (1997) Effect of controlled-atmosphere storage on the quality and carotenoid content of sliced persimmons and peaches. Postharvest Biol Technol 10:89–97CrossRefGoogle Scholar
  49. Wu JB, Dai FM, Zhou XP (2006) First report of Tomato yellow leaf curl virus in China. Ann Appl Biol 155:439–448Google Scholar
  50. Wu QS, He XH, Zou YN, Liu CY, Xiao J, Li Y (2012) Arbuscular mycorrhizas alter root system architecture of Citrus tangerine through regulating metabolism of endogenous polyamines. Plant Growth Regul 68:27–35. doi:10.1007/s10725-012-9690-6 CrossRefGoogle Scholar
  51. Yang B, Wang XM, Ma HY, Jia Y, Li X, Dai CC (2014) Effects of the fungal endophyte Phomopsis liquidambari on nitrogen uptake and metabolism in rice. Plant Growth Regul 73:165–179CrossRefGoogle Scholar
  52. Yooyongwech S, Phaukinsang N, Chaum S, Supaibulwatana K (2013) Arbuscular mycorrhiza improved growth performance in Macadamia tetraphylla L. grown under water deficit stress involves soluble sugar and proline accumulation. Plant Growth Regul 69:285–293CrossRefGoogle Scholar
  53. Zheng JR, Wang HL, Wang JM (2010) A new tomato F1 hybrid with resistance to TYLCV—‘Hangza No. 301’. China Veg 8:80–82Google Scholar
  54. Zuccaro A, Lahrmann U, Guldener U, Langen G, Pfiffi S, Biedenkopf D, Wong P, Samans B, Grimm C, Basiewicz M, Murat C, Martin F, Kogel KH (2011) Endophytic life strategies decoded by genome and transcriptome analyses of the mutualistic root symbiont Piriformospora indica. PLoS Pathog 7:e1002290PubMedCentralPubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2015

Authors and Affiliations

  • Huili Wang
    • 1
    • 2
  • Jirong Zheng
    • 3
  • Xueyan Ren
    • 4
  • Ting Yu
    • 1
  • Ajit Varma
    • 5
  • Binggan Lou
    • 6
  • Xiaodong Zheng
    • 1
  1. 1.School of Biosystems Engineering and Food ScienceZhejiang UniversityHangzhouChina
  2. 2.Hangzhou Wanxiang PolytechnicHangzhouChina
  3. 3.Department of VegetableHangzhou Academy of Agricultural SciencesHangzhouChina
  4. 4.College of Food Engineering and Nutritional ScienceShanxi Normal UniversityXi’anChina
  5. 5.Amity Institute of Microbial TechnologyAmity University Uttar PradeshNoidaIndia
  6. 6.Institute of BiotechnologyZhejiang UniversityHangzhouChina

Personalised recommendations