Plant Growth Regulation

, Volume 76, Issue 2, pp 187–197 | Cite as

Ectopic expression of FaGalUR leads to ascorbate accumulation with enhanced oxidative stress, cold, and salt tolerance in tomato

  • Xiaofeng Cai
  • Chanjuan Zhang
  • Jie Ye
  • Tixu Hu
  • Zhibiao Ye
  • Hanxia LiEmail author
  • Yuyang ZhangEmail author
Original Paper


l-Ascorbic acid (vitamin C, AsA), is an essential component for collagen biosynthesis and the major antioxidant in human, mainly obtained from the diet. Strawberry as fruit with higher AsA concentration processes a distinct AsA biosynthesis pathway from tomato (Solanum lycopersicum) which dominants in d-mannose/l-galactose pathway. Firstly, the activity of d-galacturonic acid reductase (GalUR; EC = parallel to AsA accumulation in crude extract of tomato leaves and fruits was detected. Subsequently, transgenic tomato lines overexpressing strawberry FaGalUR gene resulted in twofold and 1.6-fold increase in AsA level in tomato fruit and leaf, respectively, which correlated positively with FaGalUR transcriptional abundance and GalUR activity. Furthermore, FaGalUR-overexpressing plants showed enhanced tolerance to abiotic stresses induced by oxidization (methyl viologen), salt (NaCl) and cold as compared to the wild-type plants. Taken together, the present findings suggest that tomato might share the alternative d-galacturonate pathway for ascorbate biosynthesis, and abiotic stress tolerance as well as AsA accumulation in tomato can be enhanced by regulating strawberry GalUR gene.


Tomato Ascorbic acid Antioxidant d-galacturonic acid reductase Abiotic stresses 





Galacturonic acid reductase


d-galacturonic acid


l-galactono-1,4-lactone dehydrogenase


Myo-inositol oxygenase


Reactive oxygen species


Methyl viologen


Cauliflower mosaic virus


Polymerase chain reaction


Reverse transcription-polymerase chain reaction


Quantitative reverse transcription PCR


Messenger RNA


Nicotinamide adenine dinucleotide phosphate


High performance liquid chromatography


Fresh weight




Open reading frame




Ethylene diamine tetraacetic acid



This study was supported by grants from the State Major Basic Research Development Program (No. 2011CB100600) and National Natural Science Foundation of China (No. 31230064).

Supplementary material

10725_2014_9988_MOESM1_ESM.doc (34 kb)
Supplementary material 1 (DOC 33 kb)


  1. Agius F, Gonzalez-Lamothe R, Caballero JL, Munoz-Blanco J, Botella MA, Valpuesta V (2003) Engineering increased vitamin C levels in plants by overexpression of a D-galacturonic acid reductase. Nat Biotechnol 21(2):177–181CrossRefPubMedGoogle Scholar
  2. Badejo AA, Wada K, Gao Y, Maruta T, Sawa Y, Shigeoka S, Ishikawa T (2012) Translocation and the alternative D-galacturonate pathway contribute to increasing the ascorbate level in ripening tomato fruits together with the D-mannose/L-galactose pathway. J Exp Bot 63(1):229–239CrossRefPubMedCentralPubMedGoogle Scholar
  3. Bulley S, Wright M, Rommens C, Yan H, Rassam M, Lin-Wang K, Andre C, Brewster D, Karunairetnam S, Allan AC, Laing WA (2012) Enhancing ascorbate in fruits and tubers through over-expression of the L-galactose pathway gene GDP-L-galactose phosphorylase. Plant Biotechnol J 10(4):390–397CrossRefPubMedGoogle Scholar
  4. Chatterjee IB (1973) Evolution and the biosynthesis of ascorbic acid. Science 182(118):1271–1272CrossRefPubMedGoogle Scholar
  5. Conklin PL, Williams EH, Last RL (1996) Environmental stress sensitivity of an ascorbic acid-deficient Arabidopsis mutant. Proc Natl Acad Sci USA 93(18):9970–9974CrossRefPubMedCentralPubMedGoogle Scholar
  6. Cronje C, George GM, Fernie AR, Bekker J, Kossmann J, Bauer R (2012) Manipulation of l-ascorbic acid biosynthesis pathways in Solanum lycopersicum: elevated GDP-mannose pyrophosphorylase activity enhances L-ascorbate levels in red fruit. Planta 235(3):553–564CrossRefPubMedGoogle Scholar
  7. Davey MW, Montagu M, Inze D, Sanmartin M, Kanellis A, Smirnoff N, Benzie IJJ, Strain JJ, Favell D, Fletcher J (2000) Plant L-ascorbic acid: chemistry, function, metabolism, bioavailability and effects of processing. J Sci Food Agric 80(7):825–860CrossRefGoogle Scholar
  8. Di Matteo A, Sacco A, Anacleria M, Pezzotti M, Delledonne M, Ferrarini A, Frusciante L, Barone A (2010) The ascorbic acid content of tomato fruits is associated with the expression of genes involved in pectin degradation. BMC Plant Biol 10:163CrossRefPubMedCentralPubMedGoogle Scholar
  9. Duan M, Feng HL, Wang LY, Li D, Meng QW (2012a) Overexpression of thylakoidal ascorbate peroxidase shows enhanced resistance to chilling stress in tomato. J Plant Physiol 169(9):867–877CrossRefPubMedGoogle Scholar
  10. Duan M, Ma NN, Li D, Deng YS, Kong FY, Lv W, Meng QW (2012b) Antisense-mediated suppression of tomato thylakoidal ascorbate peroxidase influences anti-oxidant network during chilling stress. Plant Physiol Biochem 58:37–45CrossRefPubMedGoogle Scholar
  11. Eltayeb AE, Kawano N, Badawi GH, Kaminaka H, Sanekata T, Shibahara T, Inanaga S, Tanaka K (2007) Overexpression of monodehydroascorbate reductase in transgenic tobacco confers enhanced tolerance to ozone, salt and polyethylene glycol stresses. Planta 225(5):1255–1264CrossRefPubMedGoogle Scholar
  12. Endres S, Tenhaken R (2009) Myoinositol oxygenase controls the level of myoinositol in Arabidopsis, but does not increase ascorbic acid. Plant Physiol 149(2):1042–1049CrossRefPubMedCentralPubMedGoogle Scholar
  13. Fillatti JJ, Kiser J, Rose R, Comai L (1987) Efficient transfer of a glyphosate tolerance gene into tomato using a binary Agrobacterium tumefaciens vector. Nat Biotechnol 5(7):726–730Google Scholar
  14. Fulton T, Chunwongse J, Tanksley S (1995) Microprep protocol for extraction of DNA from tomato and other herbaceous plants. Plant Mol Biol Report 13(3):207–209CrossRefGoogle Scholar
  15. Garcia V, Stevens R, Gil L, Gilbert L, Gest N, Petit J, Faurobert M, Maucourt M, Deborde C, Moing A, Poessel JL, Jacob D, Bouchet JP, Giraudel JL, Gouble B, Page D, Alhagdow M, Massot C, Gautier H, Lemaire-Chamley M, de Daruvar A, Rolin D, Usadel B, Lahaye M, Causse M, Baldet P, Rothan C (2009) An integrative genomics approach for deciphering the complex interactions between ascorbate metabolism and fruit growth and composition in tomato. C R Biol 332(11):1007–1021CrossRefPubMedGoogle Scholar
  16. Haroldsen VM, Chi-Ham CL, Kulkarni S, Lorence A, Bennett AB (2011) Constitutively expressed DHAR and MDHAR influence fruit, but not foliar ascorbate levels in tomato. Plant Physiol Biochem 49(10):1244–1249CrossRefPubMedCentralPubMedGoogle Scholar
  17. Heath RL, Packer L (1968) Photoperoxidation in isolated chloroplasts : I. kinetics and stoichiometry of fatty acid peroxidation. Arch Biochem Biophys 125(1):189–198CrossRefPubMedGoogle Scholar
  18. Hemavathi UCP, Young KE, Akula N, Kim HS, Heung JJ, Oh OM, Aswath CR, Chun SC, Kim DH, Park SW (2009) Over-expression of strawberry D-galacturonic acid reductase in potato leads to accumulation of vitamin C with enhanced abiotic stress tolerance. Plant Sci 177(6):659–667CrossRefGoogle Scholar
  19. Hemavathi UCP, Akula N, Young KE, Chun SC, Kim DH, Park SW (2010) Enhanced ascorbic acid accumulation in transgenic potato confers tolerance to various abiotic stresses. Biotechnol Lett 32(2):321–330CrossRefPubMedGoogle Scholar
  20. Ishikawa T, Dowdle J, Smirnoff N (2006) Progress in manipulating ascorbic acid biosynthesis and accumulation in plants. Physiol Plant 126(3):343–355CrossRefGoogle Scholar
  21. Li F, Wu QY, Sun YL, Wang LY, Yang XH, Meng QW (2010) Overexpression of chloroplastic monodehydroascorbate reductase enhanced tolerance to temperature and methyl viologen-mediated oxidative stresses. Physiol Plant 139(4):421–434PubMedGoogle Scholar
  22. Lim M, Pulla R, Park J, Harn C, Jeong B (2012) Over-expression of l-gulono-γ-lactone oxidase (GLOase) gene leads to ascorbate accumulation with enhanced abiotic stress tolerance in tomato. In Vitro Cell Dev Biol Plant 48(5):453–461CrossRefGoogle Scholar
  23. Lorence A, Chevone BI, Mendes P, Nessler CL (2004) Myo-inositol oxygenase offers a possible entry point into plant ascorbate biosynthesis. Plant Physiol 134(3):1200–1205CrossRefPubMedCentralPubMedGoogle Scholar
  24. Melino VJ, Soole KL, Ford CM (2009) Ascorbate metabolism and the developmental demand for tartaric and oxalic acids in ripening grape berries. BMC Plant Biol 9:145CrossRefPubMedCentralPubMedGoogle Scholar
  25. Oller ALW, Agostini E, Milrad SR, Medina MI (2009) In situ and de novo biosynthesis of vitamin C in wild type and transgenic tomato hairy roots: a precursor feeding study. Plant Sci 177(1):28–34CrossRefGoogle Scholar
  26. Pavet V, Olmos E, Kiddle G, Mowla S, Kumar S, Antoniw J, Alvarez ME, Foyer CH (2005) Ascorbic acid deficiency activates cell death and disease resistance responses in Arabidopsis. Plant Physiol 139(3):1291–1303CrossRefPubMedCentralPubMedGoogle Scholar
  27. Potters G, De Gara L, Asard H, Horemans N (2002) Ascorbate and glutathione: guardians of the cell cycle, partners in crime? Plant Physiol Biochem 40(6–8):537–548CrossRefGoogle Scholar
  28. Rizzolo A, Forni E, Polesello A (1984) HPLC assay of ascorbic acid in fresh and processed fruit and vegetables. Food Chem 14(3):189–199CrossRefGoogle Scholar
  29. Sanmartin M, Drogoudi PA, Lyons T, Pateraki I, Barnes J, Kanellis AK (2003) Over-expression of ascorbate oxidase in the apoplast of transgenic tobacco results in altered ascorbate and glutathione redox states and increased sensitivity to ozone. Planta 216(6):918–928PubMedGoogle Scholar
  30. Shen CH, Yeh KW (2010) Hydrogen peroxide mediates the expression of ascorbate-related genes in response to methanol stimulation in Oncidium. J Plant Physiol 167(5):400–407CrossRefPubMedGoogle Scholar
  31. Smirnoff N (1996) The function and metabolism of ascorbic acid in plants. Ann Bot 78(6):661–669CrossRefGoogle Scholar
  32. Smirnoff N, Wheeler GL (2000) Ascorbic acid in plants: biosynthesis and function. Crit Rev Biochem Mol Biol 35(4):291–314CrossRefPubMedGoogle Scholar
  33. Sun WH, Duan M, Shu DF, Yang S, Meng QW (2010) Over-expression of StAPX in tobacco improves seed germination and increases early seedling tolerance to salinity and osmotic stresses. Plant Cell Rep 29(8):917–926CrossRefPubMedGoogle Scholar
  34. Ververidis P, John P (1991) Complete recovery in vitro of ethylene-forming enzyme activity. Phytochemistry 30(3):725–727CrossRefGoogle Scholar
  35. Wheeler GL, Jones MA, Smirnoff N (1998) The biosynthetic pathway of vitamin C in higher plants. Nature 393(6683):365–369CrossRefPubMedGoogle Scholar
  36. Wolucka BA, Van Montagu M (2003) GDP-mannose 3′,5′-epimerase forms GDP-L-gulose, a putative intermediate for the de novo biosynthesis of vitamin C in plants. J Biol Chem 278(48):47483–47490CrossRefPubMedGoogle Scholar
  37. Zhang CJ, Liu JX, Zhang YY, Cai XF, Gong PJ, Zhang JH, Wang TT, Li HX, Ye ZB (2011a) Overexpression of SlGMEs leads to ascorbate accumulation with enhanced oxidative stress, cold, and salt tolerance in tomato. Plant Cell Rep 30(3):389–398CrossRefPubMedGoogle Scholar
  38. Zhang YY, Li HX, Shu WB, Zhang CJ, Ye ZB (2011b) RNA interference of a mitochondrial APX gene improves vitamin C accumulation in tomato fruit. Sci Hortic Amst 129(2):220–226CrossRefGoogle Scholar
  39. Zhang YY, Li HX, Shu WB, Zhang CJ, Zhang W, Ye ZB (2011c) Suppressed expression of ascorbate oxidase gene promotes ascorbic acid accumulation in tomato fruit. Plant Mol Biol Report 29(3):638–645CrossRefGoogle Scholar
  40. Zou LP, Li HX, Ouyang B, Zhang JH, Ye ZB (2006) Cloning and mapping of genes involved in tomato ascorbic acid biosynthesis and metabolism. Plant Sci 170(1):120–127CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2014

Authors and Affiliations

  1. 1.Key Laboratory of Horticultural Plant Biology (Ministry of Education)Huazhong Agricultural UniversityWuhanChina

Personalised recommendations