Plant Growth Regulation

, Volume 72, Issue 1, pp 97–103

Ethylene influences in vitro regeneration frequency in the FR13A rice harbouring the SUB1A gene

  • Sabina Yasmin
  • Anna Mensuali-Sodi
  • Pierdomenico Perata
  • Chiara Pucciariello
Original paper

DOI: 10.1007/s10725-013-9840-5

Cite this article as:
Yasmin, S., Mensuali-Sodi, A., Perata, P. et al. Plant Growth Regul (2014) 72: 97. doi:10.1007/s10725-013-9840-5

Abstract

Many studies have examined the effects of ethylene on in vitro plant growth and development, often with controversial results. Ethylene accumulates in culture vessels due to both the release from the tissues and the physical entrapment due to the need for closed containers. This hormone has several effects on plant regeneration, depending on the plant species and even the cultivar. A prerequisite for ethylene use for in vitro culture is thus to formulate a specific protocol for the genotype of interest. In rice, ethylene is a key regulator of adaptation strategies to low oxygen environments. In particular, the SUBMERGENCE1A (SUB1A) gene, when present, drives the acclimation response which when activated by ethylene produced by submerged plants leads to adaptation through reduced plant growth and ethanolic fermentation enhancement. This gene is restricted to a limited number of rice for which a very specific response to ethylene is expected, whatever the source. This paper reports the regeneration differences between a SUB1A rice landrace (indica-aus, FR13A) and a non-SUB1A variety (japonica, Nipponbare). Our results suggest that regeneration protocols with exogenous ethylene precursors supply are required for the FR13A rice harbouring the SUB1A gene to overcome the problem of low regeneration efficiency.

Keywords

Ethylene In vitro culture Oryza sativa Rice SUB1 gene 

Copyright information

© Springer Science+Business Media Dordrecht 2013

Authors and Affiliations

  • Sabina Yasmin
    • 1
  • Anna Mensuali-Sodi
    • 1
  • Pierdomenico Perata
    • 1
  • Chiara Pucciariello
    • 1
  1. 1.PlantLab, Institute of Life SciencesScuola Superiore Sant’AnnaPisaItaly

Personalised recommendations