Plant Growth Regulation

, Volume 68, Issue 3, pp 525–531 | Cite as

Accumulation of red elemental selenium nanoparticles and their biological effects in Nicotinia tabacum

  • Eva Domokos-Szabolcsy
  • Laszlo Marton
  • Attila Sztrik
  • Beata Babka
  • Jozsef Prokisch
  • Miklos Fari
Brief communication


The uptake, accumulation and biological effects of red nano-sized elemental selenium (nanoSe) in comparison to selenate were investigated in plant system at the first time. The data clearly indicated that red nanoSe was taken up by tobacco callus cultures and rooted tobacco plantlets. The roots of regenerated plantlets accumulated selenium in very high concentrations, 2,947 ± 99 mg/kg DW, from the medium containing 530 μM nanoSe. The biological effects of nanoSe were different from the selenate ion in plant tissue culture. NanoSe (265–530 μM concentration range) stimulated the organogenesis and the growth of root system significantly (~40 %) while selenate did not show these effects at any concentration moreover inhibited both callus growth and root regeneration totally in 265–530 μM concentrations.


Elemental nanoselenium particles Organogenesis Selenate ion Morphogenesis 



This work was supported partly by National Research and Technological Office (NKTH, Budapest, Hungary, Project no. EA-2044-010/2009, Ereky Foundation, Debrecen, Hungary) and partly by the MOP Biotech Ltf, and Pro-Team Ltf Nyíregyháza, Hungary. We are grateful to Dr. Mihály Czakó (University of South Carolina, Department of Biological Sciences, Columbia) for revising the manuscript.


  1. Akbulut M, Cakir S (2010) The effect of Se phytotoxicity on the antioxidant systems of leaf tissues in barley (Hordeum vulgare L.) seedlings. Plant Physiol Biochem 48:160–166. doi: 10.1016/j.plaphy.2009.11.001 PubMedCrossRefGoogle Scholar
  2. Banuelos GS, Lin ZQ (2005) Phytoremediation management of selenium-laden drainage sediments in the San Luis Drain: a greenhouse feasibility study. Ecotoxic Environ Safety 62:309–316. doi: 10.1016/j.ecoenv.2004.10.013 CrossRefGoogle Scholar
  3. Cabanero AI, Madrid Y, Camara C (2004) Selenium and mercury bioaccessibility in fish samples: an in vitro digestion method. Anal Chim Acta 526:51–61. doi: 10.1016/j.aca.2004.09.039 CrossRefGoogle Scholar
  4. De Man JD, Rogosa M, Sharpe ME (1960) A medium for the cultivation of lactobacilli. J Appl Microbiol 23:130–135. doi: 10.1111/j.1365-2672.1960.tb00188.x CrossRefGoogle Scholar
  5. Dernovics M, Stefánka Zs, Fodor P (2002) Improving selenium extraction by sequential enzymatic processes for Se-speciation of selenium-enriched Agaricus bisporus. Anal Bioanal Chem 372:473–480. doi: 10.1007/s00216-001-1215-5 PubMedCrossRefGoogle Scholar
  6. Djanaguiraman M, Durga Devi D, Shanker AK, Sheeba A, Bangarusamy U (2005) Selenium—an antioxidative protectant in soybean during senescence. Plant Soil 272:77–86. doi: 10.1007/s1114-004-4039-1 CrossRefGoogle Scholar
  7. Eszenyi P, Sztrik A, Babka B, Prokisch J (2011) Elemental, nano-sized (100–500 nm) selenium production by probiotic lactic acid bacteria. Inter J Biosci Biochem Bioinform 1:148–152Google Scholar
  8. Hopper JL, Parker D (1999) Plant availability of selenite and selenate as influenced by the competing ions phosphate and sulfate. Plant Soil 210:199–207. doi: 10.1023/A:1004639906245 CrossRefGoogle Scholar
  9. Huang B, Zhang J, Hou J, Chen C (2003) Free radical scavenging efficiency of nano-Se in vitro. Free Radic Biol Med 35:805–813. doi: 10.1016/S0891-5849(03)00428-3 PubMedCrossRefGoogle Scholar
  10. Hunter WJ, Kuykendall CLD (2007) Reduction of selenite to elemental red selenium by Rhizobium sp. Strain B1. Curr Microbiol 55:344–349. doi: 10.1007/s00284-007-0202-2 PubMedCrossRefGoogle Scholar
  11. Hunter WJ, Manter DK (2008) Bio-reduction of selenite to elemental red selenium by Tetrathiobacter kashmirensis. Curr Microbiol 57:83–88. doi: 10.1007/s00284-008-9160-6 PubMedCrossRefGoogle Scholar
  12. Hurd-Karrer AM (1935) Factors affecting the absorption of selenium from soils by plants. J Agric Res 50:413–427Google Scholar
  13. Molnárová M, Fargasová A (2009) Se(IV) phytotoxicity for monocotyledonae cereals (Hordeum vulgare L., Triticum eastivum L.) and dicotyledonae crops (Sinapsis alba L., Brassica napus L.). J Hazard Mat 172:854–861. doi: 10.1016/j.jhazmat.2009.07.096 CrossRefGoogle Scholar
  14. Murashige T, Skoog F (1962) A revised medium for rapid growth and bioassays with tobacco tissues cultures. Plant Physiol 15:473–497. doi: 10.1111/j.1399-3054.1962.tb08052.x CrossRefGoogle Scholar
  15. Prokisch J, Zommara M (2008) Process for producing elemental selenium nanospheres PCT/IB2008/052838 date of receipt: 15 July 2008 receiving office: International Bureau of the World intellectual property organization your reference: P104315Google Scholar
  16. Prokisch J, Széles É, Kovács B, Daróczy L, Zommara M (2008) Formation of metal selenium nanospheres in bacteria: is it a possible detoxification mechanism? Cer Res Comm 36:947–995Google Scholar
  17. Terry N, Zayed AM, Souza MP, Tarun AS (2000) Selenium in higher plants. Ann Rev Plant Physiol Plant Mol Biol 51:401–432. doi: 10.1146/annurev.arplant.51.1.401 CrossRefGoogle Scholar
  18. Tomei FA, Barton LL, Lemanski CL, Zocco TG, Fink NH, Sillerud LO (1995) Transformation of selenate and selenite to elemental selenium by Desulfovibrio desulfuricans. J Ind Micr Biotech 14:329–336. doi: 10.1007/BF01569947 Google Scholar
  19. Van Hoewyk D, Takahashi H, Inoue E, Hess A, Tamaoki M, Pilon-Smits EAH (2008) Transcriptome analyses give into selenium-stress responses and selenium tolerance mechanisms in Arabidopsis. Physiol Plant 132:236–253. doi: 10.1111/j.1399-3054.2007.01002.x PubMedGoogle Scholar
  20. Wang H, Zhang J, Yu H (2007) Elemental selenium at nano size possesses lower toxicity without compromising the fundamental effect on selenoenzymes: comparison with selenomethionine in mice. Free Radic Biol Med 42:1524–1533. doi: 10.1016/j.freeradbiomed.2007.02.013 PubMedCrossRefGoogle Scholar
  21. White PJ, Bowen HC, Parmaguru P, Fritz M, Spracklen WP, Spiby RE, Meacham MC, Mead A, Harriman M, Trueman LJ, Smith BM, Thomas B, Broadley MR (2004) Interactions between selenium and sulphur nutrition in Arabidopsis thaliana. J Exp. Bot 55:1927–1937. doi: 10.1093/jxb/erh192 PubMedCrossRefGoogle Scholar
  22. Xiao-Zhang Y, Ji-Dong G (2008) Differences in uptake and translocation of selenate and selenite by the weeping willow and hybrid willow. Environ Sci Pollut Res 15:499–508. doi: 10.1007/s11356-008-0036-x CrossRefGoogle Scholar
  23. Xue T, Hartikainen H, Pioren V (2001) Antioxidative and growth-promoting effect of selenium on senescing lettuce. Plant Soil 237:55–61. doi: 10.1023/A:1013369804867 CrossRefGoogle Scholar
  24. Zhang JS, Gao XY, Zhang LD, Bao YP (2001) Biological effects of a nano red elemental selenium. Biofactors 15:27–38. doi: 10.1002/biof.5520150103 PubMedCrossRefGoogle Scholar
  25. Zhang J, Wang X, Xu T (2008) Elemental selenium at nano size (Nano-Se) as a potential chemopreventive agent with reduced risk of selenium toxicity: comparison with Se-methylselenocysteine in mice. Toxic Sci 101:22–31. doi: 10.1093/toxsci/kfm221 CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2012

Authors and Affiliations

  • Eva Domokos-Szabolcsy
    • 1
  • Laszlo Marton
    • 3
  • Attila Sztrik
    • 2
  • Beata Babka
    • 2
  • Jozsef Prokisch
    • 2
  • Miklos Fari
    • 1
  1. 1.Department of Plant BiotechnologyUniversity of Debrecen AGTCDebrecenHungary
  2. 2.Institute of Bio- and Environmental Energetic DebrecenUniversity of DebrecenDebrecenHungary
  3. 3.Department of Biological SciencesUniversity of South CarolinaColumbiaUSA

Personalised recommendations