Plant Growth Regulation

, Volume 68, Issue 3, pp 459–465 | Cite as

Efficiency of Agrobacterium rhizogenes–mediated root transformation of Parasponia and Trema is temperature dependent

  • Qingqin Cao
  • Rik Op den Camp
  • Maryam Seifi Kalhor
  • Ton Bisseling
  • Rene Geurts
Original paper


Parasponia trees are the only non-legume species that form nitrogen-fixing root nodules with rhizobium. Based on its taxonomic position in relation to legumes (Fabaceae), it is most likely that both lineages have gained this symbiotic capacity independently. Therefore, Parasponia forms a bridging species to understand the evolutionary constraints underlying this symbiosis. However, absence of key technologies to genetically modify Parasponia seriously impeded studies on these species. We employed Agrobacterium rhizogenes to create composite Parasponia andersonii plants that harbour transgenic roots. Here, we provide an optimized protocol to infect P. andersonii as well as its non-symbiotic sister species Trema tomentosa with A. rhizogenes. We show that the transformation efficiency is temperature dependent. Whereas the optimal growth temperature for both these species is 28 °C, the transformation is most efficient when co-cultivation with A. rhizogenes occurs at 21 °C. Using this optimized protocol up to 80 % transformation efficiency can be obtained. These robust transformation platforms will provide a strong tool to unravel the Parasponia–rhizobium symbiosis.


Parasponia Trema Agrobacterium transformation Symbiosis Transgenic root Composite plant 



This work was supported by the Dutch Science Foundation (NWO) (VIDI 864.06.007 to R.G.) and a visitors fellowship of the Dutch Graduate School of Experimental Plant Sciences to Q.C.


  1. Akkermans ADL, Abdulkadir S, Trinick MJ (1978) Nitrogen-fixing root nodules in Ulmaceae: Parasponia or (and) Trema spp.? Plant Soil 49:711–715CrossRefGoogle Scholar
  2. APG II (2003) An update of the Angiosperm Phylogeny Group classification for the orders and families of flowering plants. Bot J Linn Soc 141:399–436CrossRefGoogle Scholar
  3. Beatty PH, Good AG (2011) Future prospects for cereals that fix nitrogen. Science 333:416–417PubMedCrossRefGoogle Scholar
  4. Becking JH (1992) The Rhizobium symbiosis of the nonlegume Parasponia. In: Stacey G, Burris RH, Evans HJ (eds) Biological nitrogen fixation: achievements and objectives. Chapman & Hall, New York, pp 497–559Google Scholar
  5. Boisson-Dernier A, Chabaud M, Garcia F, Becard G, Rosenberg C, Barker DG (2001) Agrobacterium rhizogenes-transformed roots of Medicago truncatula for the study of nitrogen-fixing and endomycorrhizal symbiotic associations. Mol Plant Microb Interact 4:695–700CrossRefGoogle Scholar
  6. Burrill TJ, Hansen R (1917) Is symbiosis possible between legume bacteria and non-legume plants? University of Illinois Agricultural Experiment Station, pp 161–181Google Scholar
  7. Colpaert N, Tilleman S, Montagu MV, Gheysen G, Terryn N (2008) Composite Phaseolus vulgaris plants with transgenic roots as research tool. Afr J Biotech 7:404–408Google Scholar
  8. Davey MR, Webster G, Manders G, Ringrose FL, Power JB, Cocking EC (1993) Effective nodulation of micro-propagated shoots of the non-legume Parasponia andersonii by Bradyrhizobium. J Exp Bot 44:863–867CrossRefGoogle Scholar
  9. Dawson CJ, Hilton J (2011) Fertiliser availability in a resource-limited world: production and recycling of nitrogen and phosphorus. Food Policy 36:S14–S22CrossRefGoogle Scholar
  10. Dillen W, Clercq JD, Kapila J, Zambre M, Van Montagu M, Angenon G (1997) The effect of temperature on Agrobacterium tume- faciens-mediated gene transfer to plants. Plant J 12:1459–1463Google Scholar
  11. Estrada-Navarrete G, Alvarado-Affantranger X, Olivares JE, Díaz-Camino C, Santana O, Murillo E, Guillén G, Sánchez-Guevara N, Acosta J, Quinto C, Li D, Gresshoff PM, Sánchez F (2006) Agrobacterium rhizogenes transformation of the Phaseolus spp.: a tool for functional genomics. Mol Plant Microb Int 19:1385–1393CrossRefGoogle Scholar
  12. Gewin V (2010) Food: an underground revolution. Nature 466:552–553PubMedCrossRefGoogle Scholar
  13. Guo J, Wang Y, Song C, Zhou J, Qiu L, Huang H, Wang Y (2010) A single origin and moderate bottleneck during domestication of soybean (Glycine max): implications from microsatellites and nucleotide sequences. Ann Bot 106:505–514PubMedCrossRefGoogle Scholar
  14. Kondo T, Hasegawa H, Suzuki M (2000) Transformation and regeneration of garlic (Allium sativum L.) by Agrobacterium-mediated gene transfer. Plant Cell Rep 19:989–993Google Scholar
  15. Lee G, Crawford GW, Liu L, Chen X (2007) Plants and people from the early Neolithic to Shang periods in North China. Prot Natl Acad Sci USA 104:1087–1092CrossRefGoogle Scholar
  16. Limpens E, Ramos J, Franken C, Raz V, Compaan B, Franssen H, Bisseling T, Geurts R (2004) RNA interference in Agrobacterium rhizogenes-transformed roots of Arabidopsis and Medicago truncatula. J Exp Bot 55:983–992PubMedCrossRefGoogle Scholar
  17. Lloyd G, McCown B (1980) Commercially feasible micropropagation of mountain laural (Kalmia latifolia) by use of shoot tip cultures. Comb Proc Intl Soc 30:421–427Google Scholar
  18. Op den Camp R, Streng A, De Mita S, Cao Q, Polone E, Liu W, Ammiraju JSS, Kudrna D, Wing R, Untergasser A, Bisseling T, Geurts R (2011) LysM-type mycorrhizal receptor recruited for rhizobium symbiosis in nonlegume Parasponia. Science 331:909–912PubMedCrossRefGoogle Scholar
  19. Salas M, Park S, Srivatanakul M, Smith R (2001) Temperature influence on stable T-DNA integration in plant cells. Plant Cell Rep 20:701–705Google Scholar
  20. Streng A, Op den Camp R, Bisseling T, Geurts R (2011) Evolutionary origin of rhizobium nod factor signaling. Plant Sig Behav 6:1510–1514CrossRefGoogle Scholar
  21. Sytsma KJ, Morawetz J, Pires JC, Nepokroeff M, Conti E, Zjhra M, Hall JC, Chase MW (2002) Urticalean rosids: circumscription, rosid ancestry, and phylogenetics based on rbcL, trnL-F and ndhF sequences. Am J Bot 89:1531–1546PubMedCrossRefGoogle Scholar
  22. Trinick MJ (1973) Symbiosis between Rhizobium and the non-legume Trema aspera. Nature 244:459–460CrossRefGoogle Scholar
  23. Trinick MJ (1979) Structure of nitrogen-fixing nodules formed by Rhizobium on roots of Parasponia andersonii Planch. Can J Microbiol 25:565–578PubMedCrossRefGoogle Scholar
  24. Wang H, Moore MJ, Soltis PS, Bell CD, Brockington SF, Alexandre R, Davis CC, Latvis M, Manchester SR, Soltis DE (2009) Rosid radiation and the rapid rise of angiosperm-dominated forests. Proc Natl Acad Sci USA 106:3853–3858PubMedCrossRefGoogle Scholar
  25. Webster G, Poulton PR, Cocking EC, Davey MR (1995) The nodulation of micro-propagated plants of Parasponia andersonii by tropical legume rhizobia. J Exp Bot 46:1131–1137CrossRefGoogle Scholar
  26. White FF, Taylor BH, Huffman GA, Gordon MP, Nester EW (1985) Molecular and genetic analysis of the transferred DNA regions of the root-inducing plasmid of Agrobacterium rhizogenes. J Bacteriol 164:33–44PubMedGoogle Scholar
  27. Yesson C, Russel S, Parrish T, Dalling J, Garwood N (2004) Phylogenetic framework for Trema (Celtidaceae). Plant Syst Evol 248:85–109CrossRefGoogle Scholar
  28. Young ND, Debellé F, Oldroyd GED, Geurts R, Cannon SB, Udvardi MK, Benedito VA et al (2011) The Medicago genome provides insight into the evolution of rhizobial symbioses. Nature. doi: 10.1038/nature10625

Copyright information

© Springer Science+Business Media B.V. 2012

Authors and Affiliations

  • Qingqin Cao
    • 1
    • 2
  • Rik Op den Camp
    • 2
  • Maryam Seifi Kalhor
    • 2
  • Ton Bisseling
    • 2
    • 3
  • Rene Geurts
    • 2
  1. 1.Department of BiotechnologyBeijing University of AgricultureBeijingPeople’s Republic of China
  2. 2.Laboratory of Molecular Biology, Department of Plant SciencesWageningen UniversityWageningenThe Netherlands
  3. 3.King Saud University, College of ScienceRiyadhSaudi Arabia

Personalised recommendations