Plant Growth Regulation

, Volume 68, Issue 2, pp 211–221 | Cite as

Oligosaccharins and Pectimorf® stimulate root elongation and shorten the cell cycle in higher plants

  • Lien González-PérezEmail author
  • Alenna Vázquez-Glaría
  • Lara Perrotta
  • Alexis Acosta
  • Sarah A. Scriven
  • Robert Herbert
  • Juan Carlos Cabrera
  • Dennis Francis
  • Hilary J. Rogers
Original paper


The aim was to test promotive effects of oligosaccharins on root growth and development at the root apical meristem and the cell cycle using the model systems, Arabidopsis thaliana and the tobacco (Nicotiana tabacum) BY-2 cell line. Arabidopsis was grown on medium supplemented with 0.1 mg L−1 oligoxyloglucan (OX), 10 mg L−1 Pectimorf® (P) or 0.5 mg L−1 indole butyric acid (IBA). Primary root length, number of lateral root primordia, root apical meristem (RAM) length and epidermal cell length were recorded. Three genotypes were used: wild type (WT) and transgenic lines expressing either Schizosaccharomyces pombe (Sp) cdc25 or over-expressing(oe) Arath;WEE1. All treatments promoted primary root elongation but repressed lateral root production. Only P had a clear positive effect on meristem length whereas all other genotype × treatment interactions showed shorter RAMs. Whilst IBA, OX and P induced an increase in cell length in Spcdc25, the same treatments caused a significant decrease in WEE1 oe . Mitotic indices were also significantly higher in roots treated with oligosaccharins suggesting a shortening of the cell cycle. This hypothesis was tested in the BY-2 cell line. Both OX and P shortened the cell cycle exclusively through a shortening of G1 whilst mitotic cell size remained constant between treatments. In conclusion, both OX and P do indeed stimulate growth and shorten the cell cycle in higher plants and at the cellular level are able to reverse large and small cell size phenotypes normally exhibited by WEE1 oe and Spcdc25 genotypes, respectively.


Arabidopsis thaliana BY-2 cells Cell cycle Lateral roots Nicotiana tabacum Oligosaccharins Plant growth regulators Root elongation Root morphology 



We thank the Royal Society for funding an International Joint Project—2008/R4, and Prof. J. A. H. Murray and Dr. J. Nieuwland (Cardiff School of Biosciences) for advice and assistance on using DIC microscopy. LP thanks the University of Sassari for funding her post graduate research, SAS thanks the Biochemical Society (UK) for the award of a Summer Bursary and RJH thanks the Univ. Worcester for funding sabbatical research in the Cardiff School of Biosciences.


  1. Abramoff MD, Magelhaes PJ, Ram SJ (2004) Image processing with Image. J Biophotonics Int 11(7):36–42Google Scholar
  2. Acosta A, González L, Valdés M, González C, Sánchez L (2007) Efecto de dos oligosacarinas sobre la expresión isoenzimática al ser aplicadas sobre dos variedades de tabaco (Nicotiana tabacum L.). Cultivos Tropicales 28(3):5–12Google Scholar
  3. Barlow PW, Rathfelder EL (1984) Correlations between the dimensions of different zones of grass root apices, and their implications for morphogenesis and differentiation in roots. Ann Bot 53(2):249–260Google Scholar
  4. Beemster GTS, Fiorani F, Inzé D (2003) Cell cycle: the key to plant growth control? Trends Plant Sci 8(4):154–158. doi: 10.1016/s1360-1385(03)00046-3 PubMedCrossRefGoogle Scholar
  5. Bellincampi D, Cardarelli M, Zaghi D, Serino G, Salvi G, Gatz C, Cervone F, Altamura MM, Costantino P, Lorenzo GD (1996) Oligogalacturonides prevent rhizogenesis in rolb-transformed tobacco explants by inhibiting auxin-induced expression of the rolB gene. Plant Cell 8(3):477–487. doi: 10.1105/tpc.8.3.477 PubMedGoogle Scholar
  6. Berleth T, Jurgens G (1993) The role of the monopteros gene in organising the basal body region of the Arabidopsis embryo. Development 118(2):575–587Google Scholar
  7. Blakely LM, Durham M, Evans TA, Blakely RM (1982) Experimental studies on lateral root formation in radish seedling roots. I. general methods, developmental stages, and spontaneous formation of laterals. Bot Gaz 143(3):341–352CrossRefGoogle Scholar
  8. Cabrera JC, Gómez R, Diosdado E, Hormaza JV, Iglesias R, Gutiérrez AE, González SJ (2003) Procedimiento de obtención de una mezcla de oligosacáridos pécticos estimuladora del enraizamiento vegetal. Cuba Patent 22859/2003Google Scholar
  9. Clough SJ, Bent AF (1998) Floral dip: a simplified method for Agrobacterium-mediated transformation of Arabidopsis thaliana. Plant J 16(6):735–743. doi: 10.1046/j.1365-313x.1998.00343.x PubMedCrossRefGoogle Scholar
  10. Clowes FAL (1956) Localization of nucleic acid synthesis in root meristems. J Exp Bot 7(3):307–312. doi: 10.1093/jxb/7.3.307 CrossRefGoogle Scholar
  11. Côté F, Hahn MG (1994) Oligosaccharins: structures and signal transduction. Plant Mol Biol 26(5):1379–1411. doi: 10.1007/bf00016481 PubMedCrossRefGoogle Scholar
  12. Cutillas-Iturralde A, Peña MJ, Zarra I, Lorences EP (1998) A xyloglucan from persimmon fruit cell walls. Phytochemistry 48(4):607–610CrossRefGoogle Scholar
  13. Dominí M, Benítez B (2004) Uso de biopreparados como promotores de enraizamientos en margullos de Ficus (Ficus benjamina). Cultivos Tropicales 25(3):45–48Google Scholar
  14. Dubrovsky J, Doerner P, Colón-Carmona A, Rost T (2000) Pericycle cell proliferation and lateral root initiation in arabidopsis. Plant Physiol 124:1648–1657PubMedCrossRefGoogle Scholar
  15. Dubrovsky JG, Gambetta GA, Hernández-Barrera A, Shishkova S, González I (2006) Lateral root initiation in arabidopsis: developmental window, spatial patterning, density and predictability. Ann Bot 97(5):903–915. doi: 10.1093/aob/mcj604 PubMedCrossRefGoogle Scholar
  16. Dubrovsky JG, Sauer M, Napsucialy-Mendivil S, Ivanchenko MG, Friml J, Shishkova S, Celenza J, Benková E (2008) Auxin acts as a local morphogenetic trigger to specify lateral root founder cells. PNAS 105(25):8790–8794. doi: 10.1073/pnas.0712307105 PubMedCrossRefGoogle Scholar
  17. Dubrovsky JG, Soukup A, Napsucialy-Mendivil S, Jeknić Z, Ivanchenko MG (2009) The lateral root initiation index: an integrative measure of primordium formation. Ann Bot 103:807–817. doi: 10.1093/aob/mcn267 PubMedCrossRefGoogle Scholar
  18. Falcón A, Cabrera J (2007) Actividad enraizadora de una mezcla de oligogalacturónidos en pecíolos de violeta africana (Saintpaulia ionantha L.). Cultivos Tropicales 28(2):87–90Google Scholar
  19. Francis D (1998) The cell cycle and plant growth. In: Lambers H, Poorter H, Van Vuuren MI (eds) Inherent variation in plant growth. Backhuys Publishers, Leiden, pp 5–20Google Scholar
  20. Francis D, Davies MS, Braybrook C, James NC, Herbert RJ (1995) An effect of zinc on M-phase and G1 of the plant cell cycle in the synchronous TBY-2 tobacco cell suspension. J Exp Bot 46(12):1887–1894. doi: 10.1093/jxb/46.12.1887 CrossRefGoogle Scholar
  21. Francis D, Davies MS, Barlow PW (2008) A strong nucleotypic effect on the cell cycle regardless of ploidy level. Ann Bot 101:747–757PubMedCrossRefGoogle Scholar
  22. Friml J (2003) Auxin transport—shaping the plant. Curr Opin Plant Biol 6(1):7–12. doi: 10.1016/s1369526602000031 PubMedCrossRefGoogle Scholar
  23. Fry SC, York WS, Albersheim P, Darvill A, Hayashi T, Joseleau J-P, Kato Y, Lorences EP, Maclachlan GA, McNeil M, Mort AJ, Grant Reid JS, Seitz HU, Selvendran RR, Voragen AGJ, White AR (1993) An unambiguous nomenclature for xyloglucan-derived oligosaccharides. Physiol Plant 89(1):1–3. doi: 10.1111/j.1399-3054.1993.tb01778.x CrossRefGoogle Scholar
  24. Gao X, Francis D, Ormrod JC, Bennett MD (1992) Changes in cell number and cell division activity during endosperm development in allohexaploid wheat, Triticum aestivum L. J Exp Bot 43(12):1603–1609. doi: 10.1093/jxb/43.12.1603 CrossRefGoogle Scholar
  25. Gatz C, Frohberg C, Wendenburg R (1992) Stringent repression and homogeneous de-repression by tetracycline of a modified CaMV 35S promoter in intact transgenic tobacco plants. Plant J 2(3):397–404. doi: 10.1046/j.1365-313X.1992.t01-37-00999.x PubMedGoogle Scholar
  26. Hammer Ø, Harper DAT, Ryan PD (2001) PAST: paleontological statistics software package for education and data analysis. Palaeontol Electronica 4(1):9Google Scholar
  27. Hayashi T (1989) Xyloglucans in the primary cell wall. Ann Rev Plant Physiol Plant Mol Biol 40(1):139–168. doi: 10.1146/annurev.pp.40.060189.001035 CrossRefGoogle Scholar
  28. Herbert RJ, Vilhar B, Evett C, Orchard CB, Rogers HJ, Davies MS, Francis D (2001) Ethylene induces cell death at particular phases of the cell cycle in the tobacco TBY-2 cell line. J Exp Bot 52(361):1615–1623. doi: 10.1093/jexbot/52.361.1615 PubMedCrossRefGoogle Scholar
  29. Hernández L, Benítez B, Soto F, Dominí ME (2007) Efecto de una mezcla de oligogalacturónidos en el crecimiento y desarrollo de Anthurium andreanum. Cultivos Tropicales 28(4):83–86Google Scholar
  30. Hernández MM, Suárez L, Valcárcel M (2009) Empleo del pectimorf en la micropropagación de Spathiphyllum sp. Cultivos Tropicales 30(3):56–58Google Scholar
  31. Inoue T, Higuchi M, Hashimoto Y, Seki M, Kobayashi M, Kato T, Tabata S, Shinozaki K, Kakimoto T (2001) Identification of CRE1 as a cytokinin receptor from Arabidopsis. Nature 409(6823):1060–1063. doi: 10.1038/35059117 PubMedCrossRefGoogle Scholar
  32. Iwasaki K-I, Matsubara Y (2000) Purification of pectate oligosaccharides showing root-growth-promoting activity in lettuce using ultrafiltration and nanofiltration membranes. J Biosci Bioeng 89(5):495–497. doi: 10.1016/s1389-1723(00)89104-5 PubMedCrossRefGoogle Scholar
  33. Kaida R, Sugawara S, Negoro K, Maki H, Hayashi T, Kaneko TS (2010) Acceleration of cell growth by xyloglucan oligosaccharides in suspension-cultured tobacco cells. Mol Plant 3(3):549–554. doi: 10.1093/mp/ssq010 PubMedCrossRefGoogle Scholar
  34. Kaku T, Tabuchi A, Wakabayashi K, Hoson T (2004) Xyloglucan oligosaccharides cause cell wall loosening by enhancing xyloglucan endotransglucosylase/hydrolase activity in azuki bean epicotyls. Plant Cell Physiol 45(1):77–82. doi: 10.1093/pcp/pch007 PubMedCrossRefGoogle Scholar
  35. Kollárová K, Lisková D, Lux A (2007) Influence of galactoglucomannan oligosaccharides on root culture of Karwinskia humboldtiana. Plant Cell Tissue Organ Cult 91(1):9–19. doi: 10.1007/s11240-007-9272-x CrossRefGoogle Scholar
  36. Kollárová K, Richterova D, Slováková L, Henselová M, Capek P, Lišková D (2009) Impact of galactoglucomannan oligosaccharides on elongation growth in intact mung bean plants. Plant Sci 177(4):324–330. doi: 10.1016/j.plantsci.2009.06.002 CrossRefGoogle Scholar
  37. Kollárová K, Vatehová Z, Slováková L, Lišková D (2010) Interaction of galactoglucomannan oligosaccharides with auxin in mung bean primary root. Plant Physiol and Biochem 48(6):401–406. doi: 10.1016/j.plaphy.2010.03.009 CrossRefGoogle Scholar
  38. Labavitch JM, Ray PM (1974) Relationship between promotion of xyloglucan metabolism and induction of elongation by indoleacetic acid. Plant Physiol 54(4):499–502. doi: 10.1104/pp.54.4.499 PubMedCrossRefGoogle Scholar
  39. Linsmaier EM, Skoog F (1965) Organic growth factor requirements of tobacco tissue cultures. Physiol Plant 18(1):100–127. doi: 10.1111/j.1399-3054.1965.tb06874.x CrossRefGoogle Scholar
  40. Mata GH, Sepúlveda B, Richards A, Soriano E (2006) The architecture of Phaseolus vulgaris root is altered when a defense response is elicited by an oligogalacturonide. Braz J Plant Physiol 18:351–355CrossRefGoogle Scholar
  41. Mazumder S, Lerouge P, Loutelier-Bourhis C, Driouich A, Ray B (2005) Structural characterisation of hemicellulosic polysaccharides from Benincasa hispida using specific enzyme hydrolysis, ion exchange chromatography and MALDI-TOF mass spectroscopy. Carbohydr Polym 59(2):231–238CrossRefGoogle Scholar
  42. McDougall GJ, Fry SC (1990) Xyloglucan oligosaccharides promote growth and activate cellulase: evidence for a role of cellulase in cell expansion. Plant Physiol 93(3):1042–1048. doi: 10.1104/pp.93.3.1042 PubMedCrossRefGoogle Scholar
  43. McKibbin RS, Halford NG, Francis D (1998) Expression of fission yeast cdc25 alters the frequency of lateral root formation in transgenic tobacco. Plant Mol Biol 36(4):601–612. doi: 10.1023/a:1005937011095 PubMedCrossRefGoogle Scholar
  44. Murashige T, Skoog F (1962) A revised medium for rapid growth and bioassays with tobacco tissue cultures. Physiol Plant 15(3):473–497CrossRefGoogle Scholar
  45. Nagata T, Nemoto Y, Hasezawa S (1992) Tobacco BY-2 cell line as the ‘HeLa’ cells in the cell biology of higher plants. Int Rev Cytol 132:1–30CrossRefGoogle Scholar
  46. O’Farrell PH (2001) Triggering the all-or-nothing switch into mitosis. Trends Cell Biol 11(12):512–519. doi: 10.1016/s0962-8924(01)02142-0 PubMedCrossRefGoogle Scholar
  47. Orchard CB, Siciliano I, Sorrell DA, Marchbank A, Rogers HJ, Francis D, Herbert RJ, Suchomelova P, Lipavska H, Azmi A, Onckelen HV (2005) Tobacco BY-2 cells expressing fission yeast cdc25 bypass a G2/M block on the cell cycle. Plant J 44(2):290–299. doi: 10.1111/j.1365-313X.2005.02524.x PubMedCrossRefGoogle Scholar
  48. Péret B, De Rybel B, Casimiro I, Benková E, Swarup R, Laplaze L, Beeckman T, Bennett MJ (2009) Arabidopsis lateral root development: an emerging story. Trends Plant Sci 14(7):399–408PubMedCrossRefGoogle Scholar
  49. Pritchard J (1988) Control of root growth: cell walls and turgor. In: Lambers H, Poorter H, Van Vuuren MI (eds) Inherent variation in plant growth. Backhuys Publishers, Leiden, pp 21–40Google Scholar
  50. Siciliano I (2006) Effect of plant WEE1 on the cell cycle and development in Arabidopsis thaliana and Nicotiana tabacum. Cardiff University, CardiffGoogle Scholar
  51. Sorrell D, Marchbank A, McMahon K, Dickinson R, Rogers H, Francis D (2002) A WEE1 homologue from Arabidopsis thaliana. Planta 215(3):518–522. doi: 10.1007/s00425-002-0815-4 PubMedCrossRefGoogle Scholar
  52. Spadafora ND (2008) Effect of CDC25 and WEE1 on plant cell cycle and morphogenesis. Cardiff University, CardiffGoogle Scholar
  53. Spadafora ND, Doonan JH, Herbert RJ, Bitonti MB, Wallace E, Rogers HJ, Francis D (2010) Arabidopsis T-DNA insertional lines for CDC25 are hypersensitive to hydroxyurea but not to zeocin or salt stress. Annals of Botany:[Epub ahead of print]. doi: 10.1093/aob/mcq142
  54. Suzuki T, Tomita-Yokotani K, Tsubura H, Yoshida S, Kusakabe I, Yamada K, Miki Y, Hasegawa K (2002) Plant growth-promoting oligosaccharides produced from tomato waste. Bioresour Technol 81(2):91–96. doi: 10.1016/s0960-8524(01)00124-9 PubMedCrossRefGoogle Scholar
  55. Takeda T, Furuta Y, Awano T, Mizuno K, Mitsuishi Y, Hayashi T (2002) Suppression and acceleration of cell elongation by integration of xyloglucans in pea stem segments. PNAS 99(13):9055–9060. doi: 10.1073/pnas.132080299 PubMedCrossRefGoogle Scholar
  56. Van’t Hof J, Kuniyuki A, Bjerknes CA (1978) The size and number of replicon families of chromosomal DNA of Arabidopsis thaliana. Chromosoma 68(3):269–285. doi: 10.1007/bf00335421 CrossRefGoogle Scholar
  57. Woodward F (1988) Temperature and the distribution of plant species. Symp Soc Exp Biol 42:59–75PubMedGoogle Scholar
  58. Zabotin AI, Barisheva TS, Trofimova OI, Toroschina TE, Larskaya IA, Zabotina OA (2009) Oligosaccharin and ABA synergistically affect the acquisition of freezing tolerance in winter wheat. Plant Physiol Biochem 47(9):854–858. doi: 10.1016/j.plaphy.2009.04.004 PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2012

Authors and Affiliations

  • Lien González-Pérez
    • 1
    Email author
  • Alenna Vázquez-Glaría
    • 1
  • Lara Perrotta
    • 2
  • Alexis Acosta
    • 3
  • Sarah A. Scriven
    • 4
  • Robert Herbert
    • 5
  • Juan Carlos Cabrera
    • 6
  • Dennis Francis
    • 4
  • Hilary J. Rogers
    • 4
  1. 1.Plant Biology Department, Faculty of BiologyUniversity of HavanaCity of HavanaCuba
  2. 2.Department of Botanical, Ecological and Geological SciencesUniversity of SassariSassariItaly
  3. 3.Biotechnology InstituteNational Autonomous University of Mexico (UNAM)CuernavacaMexico
  4. 4.School of BiosciencesCardiff UniversityCardiffUK
  5. 5.Institute of Science and the EnvironmentWorcester UniversityWorcesterUK
  6. 6.Unité de BiotechnologieMATERIA NOVAGhislenghienBelgium

Personalised recommendations