Plant Growth Regulation

, Volume 67, Issue 1, pp 19–25 | Cite as

6-Benzylaminopurine treatment induces increased pubescence on wheat leaves

  • Hidekazu KobayashiEmail author
  • Mikiko Yanaka
  • Tatsuya M. Ikeda
Original Paper


The epidermis of wheat (Triticum aestivum L.) leaves contains trichomes that contribute to resistance to insect pests and drought tolerance. In the present study, we examined the effects of 6-benzylaminopurine (BA) and methyl jasmonate (MeJA) treatment on trichome development on the leaves of wheat cv. Norin 61 seedlings. Without phytohormone treatment, trichomes on the adaxial leaf surface were short (90 μm) and their density was low (3.6 trichomes/mm2). Both BA and MeJA treatments significantly increased the density of trichomes, and there were no significant differences between the phytohormone treatments. BA treatment increased trichome length to five times as long as that in the control, whereas MeJA treatment did not significantly affect trichome length. Since BA treatment concurrently increased the DNA content of the nuclei in trichome cells, endoreduplication of the nuclei is probably involved in trichome enlargement. These results indicate that even wheat cultivars with short trichomes retain the mechanisms for trichome enlargement and stimuli such as BA application can induce increased pubescence on wheat leaves.


Cytokinin Epidermal surface Jasmonic acid Leaf hair Ploidy Triticum aestivum 





Cyclin-dependent kinase




Jasmonic acid


Methyl jasmonate


Phosphate buffered saline


  1. Baroncelli S, Cavallini A, Lercari B, Cionini G, Rocca M, D’Amato F (1995) Light and gibberellic acid effects on cell elongation in the leaf epidermis of two durum wheat cultivars. J Genet Breed 49:297–302Google Scholar
  2. Boughton AJ, Hoover K, Felton GW (2005) Methyl jasmonate application induces increased densities of glandular trichomes on tomato, Lycopersicon esculentum. J Chem Ecol 31:2211–2216. doi: 10.1007/s10886-005-6228-7 PubMedCrossRefGoogle Scholar
  3. Dobrovolskaya O, Pshenichnikova TA, Arbuzova VS, Lohwasser U, Röder MS, Börner A (2007) Molecular mapping of genes determining hairy leaf character in common wheat with respect to other species of the Triticeae. Euphytica 155:285–293. doi: 10.1007/s10681-006-9329-7 CrossRefGoogle Scholar
  4. Francis D, Sorrell DA (2001) The interface between the cell cycle and plant growth regulators: a mini review. Plant Growth Regul 33:1–12. doi: 10.1023/A:1010762111585 CrossRefGoogle Scholar
  5. Gao J, Hofstra G, Fletcher RA (1988) Anatomical changes induced by triazoles in wheat seedlings. Can J Bot 66:1178–1185. doi: 10.1139/b88-168 CrossRefGoogle Scholar
  6. Griffiths PD, Ougham HJ, Jones RN (1994) Genotypic and environmental effects on endopolyploidy in the epidermal tissues of Lolium perenne L. and Lolium multiflorum Lam. New Phytol 128:339–345. doi: 10.1111/j.1469-8137.1994.tb04018.x CrossRefGoogle Scholar
  7. Hoagland DR, Arnon DI (1950) The water-culture method for growing plants without soil. Calif Agric Exp Sta Circular 347Google Scholar
  8. Hoxie RP, Wellso SG, Webster JA (1975) Cereal leaf beetle response to wheat trichome length and density. Environ Entomol 4:365–370Google Scholar
  9. Kobayashi H, Masaoka Y, Takahashi Y, Ide Y, Sato S (2007) Ability of salt glands in Rhodes grass (Chloris gayana Kunth) to secrete Na+ and K+. Soil Sci Plant Nutr 53:764–771. doi: 10.1111/j.1747-0765.2007.00192.x CrossRefGoogle Scholar
  10. Kobayashi H, Yanaka M, Ikeda TM (2010) Exogenous methyl jasmonate alters trichome density on leaf surfaces of Rhodes grass (Chloris gayana Kunth). J Plant Growth Regul 29:506–511. doi: 10.1007/s00344-010-9161-0 CrossRefGoogle Scholar
  11. Larkins BA, Dilkes BP, Dante RA, Coelho CM, Woo YM, Liu Y (2001) Investigating the hows and whys of DNA endoreduplication. J Exp Bot 52:183–192. doi: 10.1093/jexbot/52.355.183 PubMedCrossRefGoogle Scholar
  12. Larson-Rabin Z, Li Z, Masson PH, Day CD (2009) FZR2/CCS52A1 expression is a determinant of endoreduplication and cell expansion in Arabidopsis. Plant Physiol 149:874–884. doi: 10.1104/pp.108.132449 PubMedCrossRefGoogle Scholar
  13. Levin DA (1973) The role of trichomes in plant defense. Q Rev Biol 48:3–15CrossRefGoogle Scholar
  14. Maes L, Inzé D, Goossens A (2008) Functional specialization of the TRANSPARENT TESTA GLABRA1 network allows differential hormonal control of laminal and marginal trichome initiation in Arabidopsis rosette leaves. Plant Physiol 148:1453–1464. doi: 10.1104/pp.108.125385 PubMedCrossRefGoogle Scholar
  15. Maes L, Van Nieuwerburgh FCW, Zhang Y, Reed DW, Pollier J, Vande Casteele SRF, Inzé D, Covello PS, Deforce DLD, Goossens A (2011) Dissection of the phytohormonal regulation of trichome formation and biosynthesis of the antimalarial compound artemisinin in Artemisia annua plants. New Phytol 189:176–189. doi: 10.1111/j.1469-8137.2010.03466.x PubMedCrossRefGoogle Scholar
  16. Melaragno JE, Mehrotra B, Coleman AW (1993) Relationship between endopolyploidy and cell size in epidermal tissue of Arabidopsis. Plant Cell 5:1661–1668. doi: 10.1105/tpc.5.11.1661 PubMedCrossRefGoogle Scholar
  17. Ni X, Quisenberry SS (1997) Effect of wheat leaf epicuticular structure on host selection and probing rhythm of Russian wheat aphid (Homoptera: Aphididae). J Econ Entomol 90:1400–1407Google Scholar
  18. Ramadan T, Flowers TJ (2004) Effects of salinity and benzyl adenine on development and function of microhairs of Zea mays L. Planta 219:639–648. doi: 10.1007/s00425-004-1269-7 PubMedCrossRefGoogle Scholar
  19. Reynolds M, Skovmand B, Trethowan R, Pfeiffer W (1999) Evaluating a conceptual model for drought tolerance. In: Ribaut J-M, Poland D (eds) Molecular approaches for the genetic improvement of cereals for stable production in water-limited environments. CIMMYT, Mexico, pp 49–53Google Scholar
  20. Rosiak M, Polit JT, Maszewski J (2002) Effects of 6-dimethylaminopurine, 2-aminopurine, olomoucine and sodium vanadate on DNA endoreduplication in primary roots of Pisum sativum. Biol Plant 45:205–211. doi: 10.1023/A:1015184320536 CrossRefGoogle Scholar
  21. Schellmann S, Hülskamp M (2005) Epidermal differentiation: trichomes in Arabidopsis as a model system. Int J Dev Biol 49:579–584. doi: 10.1387/ijdb.051983ss PubMedCrossRefGoogle Scholar
  22. Sugimoto-Shirasu K, Roberts K (2003) “Big it up”: endoreduplication and cell-size control in plants. Curr Opin Plant Biol 6:544–553. doi: 10.1016/j.pbi.2003.09.009 PubMedCrossRefGoogle Scholar
  23. Sugiura H (2004) Effects of 6-benzylaminopurine and ethephon applications on flowering and morphology in summer-to-autumn-flowering Chrysanthemum under open field conditions. J Pestic Sci 29:308–312. doi: 10.1584/jpestics.29.308 CrossRefGoogle Scholar
  24. Szymanski DB, Marks MD (1998) GLABROUS1 overexpression and TRIPTYCHON alter the cell cycle and trichome cell fate in Arabidopsis. Plant Cell 10:2047–2062. doi: 10.1105/tpc.10.12.2047 PubMedCrossRefGoogle Scholar
  25. Taketa S, Chang CL, Ishii M, Takeda K (2002) Chromosome arm location of the gene controlling leaf pubescence of a Chinese local wheat cultivar ‘Hong-mang-mai’. Euphytica 125:141–147. doi: 10.1023/A:1015812907111 CrossRefGoogle Scholar
  26. Traw MB, Bergelson J (2003) Interactive effects of jasmonic acid, salicylic acid, and gibberellin on induction of trichomes in Arabidopsis. Plant Physiol 133:1367–1375. doi: 10.1104/pp.103.027086 PubMedCrossRefGoogle Scholar
  27. Wagner GJ, Wang E, Shepherd RW (2004) New approaches for studying and exploiting an old protuberance, the plant trichome. Ann Bot 93:3–11. doi: 10.1093/aob/mch011 PubMedCrossRefGoogle Scholar
  28. Wasternack C (2007) Jasmonates: an update on biosynthesis, signal transduction and action in plant stress response, growth and development. Ann Bot 100:681–697. doi: 10.1093/aob/mcm079 PubMedCrossRefGoogle Scholar
  29. Webster JA, Inayatullah C, Hamissou M, Mirkes KA (1994) Leaf pubescence effects in wheat on yellow sugarcane aphids and greenbugs (Homoptera: Aphididae). J Econ Entomol 87:231–240Google Scholar
  30. Werker E (2000) Trichome diversity and development. Adv Bot Res 31:1–35. doi: 10.1016/S0065-2296(00)31005-9 CrossRefGoogle Scholar
  31. Werner T, Schmülling T (2009) Cytokinin action in plant development. Curr Opin Plant Biol 12:527–538. doi: 10.1016/j.pbi.2009.07.002 PubMedCrossRefGoogle Scholar
  32. Wildermuth MC (2010) Modulation of host nuclear ploidy: a common plant biotroph mechanism. Curr Opin Plant Biol 13:449–458. doi: 10.1016/j.pbi.2010.05.005 PubMedCrossRefGoogle Scholar
  33. Xia J, Zhao H, Liu W, Li L, He Y (2009) Role of cytokinin and salicylic acid in plant growth at low temperatures. Plant Growth Regul 57:211–221. doi: 10.1007/s10725-008-9338-8 CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2012

Authors and Affiliations

  • Hidekazu Kobayashi
    • 1
    • 2
    Email author
  • Mikiko Yanaka
    • 3
  • Tatsuya M. Ikeda
    • 3
  1. 1.Ohda Research StationNational Agriculture and Food Research OrganizationShimaneJapan
  2. 2.National Agricultural Research Center for Western RegionHiroshimaJapan
  3. 3.National Agricultural Research Center for Western RegionHiroshimaJapan

Personalised recommendations