Plant Growth Regulation

, Volume 65, Issue 3, pp 459–471 | Cite as

Local induction of senescence by darkness in Cucurbita pepo (zucchini) cotyledons or the primary leaf induces opposite effects in the adjacent illuminated organ

  • Kalina Ananieva
  • Evguéni D. Ananiev
  • Snejana Doncheva
  • Detelin Stefanov
  • Kiril Mishev
  • Miroslav Kamínek
  • Vaclav Motyka
  • Petre I. Dobrev
  • Jiři Malbeck
Original Paper
  • 184 Downloads

Abstract

Local darkening of zucchini cotyledons or the primary leaf affected in an organ-specific manner the adjacent ones which remained under the initial light regime. Individual darkening of either the pair of cotyledons or the primary leaf led to acceleration of senescence expressed by lowering of chlorophyll content and net photosynthetic rate. Darkening of the pair of cotyledons induced a reduction in total cytokinin (CK) levels and increased CK oxidase/dehydrogenase (CKX) activity in the adjacent illuminated primary leaf. In addition, abscisic acid (ABA) content was increased which correlated with reduced stomatal aperture leading to decreased stomatal conductance and transpiration rate. In contrast, darkening of the adjacent primary leaf led to increased metabolic activity in the illuminated cotyledons including increased total CK levels in parallel with decreased CKX activity, decreased ABA content in correlation with increased stomatal aperture, stomatal conductance and transpiration rate. On the other hand, the functional activity of the photosynthetic apparatus as well as the transcript levels of the three photosynthesis-related genes psbA, psaB and rbcL remained almost unaffected in both illuminated organs. Thus, compared with the primary leaves, cotyledons appeared to be much more resistant to the dark stress applied either directly or to the adjacent primary leaf. Our results indicated the involvement of CKs and ABA signalling in the control of the communication mechanisms between cotyledons and the primary leaf that could operate in response to changing environmental factors like shading during earlier stages of plant development.

Keywords

Abscisic acid Cotyledons Cytokinins Cytokinin oxidase/dehydrogenase Dark treatment Primary leaves 

Abbreviations

ABA

Abscisic acid

CK

Cytokinin

cisZ

cis-Zeatin

cisZR

cis-Zeatin riboside

CKX

Cytokinin oxidase/dehydrogenase

DHZ

Dihydrozeatin

DHZR

Dihydrozeatin 9-riboside

DHZ7G

Dihydrozeatin 7-glucoside

DHZ9G

Dihydrozeatin 9-glucoside

DHZROG

Dihydrozeatin 9-riboside O-glucoside

DHZRMP

Dihydrozeatin 9-riboside-5′-monophosphate

IAA

Indole-3-acetic acid

iP

N6-(2-isopentenyl)adenine

iPR

N6-(2-isopentenyl)adenine 9-riboside

iP7G

N6-(2-isopentenyl)adenine 7-glucoside

iP9G

N6-(2-isopentenyl)adenine 9-glucoside

iPRMP

N6-(2-isopentenyl)adenine 9-riboside-5′-monophosphate

PSII

Photosystem II

psaB

A gene coding for PSI apoprotein PsaB

psbA

A gene coding for D1 protein of PSII reaction center

rbcL

A gene coding for the large subunit of Rubisco

Rubisco

Ribulose-1,5-bisphosphate carboxylase/oxygenase

SAGs

Senescence-associated genes

Z

trans-Zeatin

ZR

trans-Zeatin 9-riboside

Z7G

trans-Zeatin 7-glucoside

Z9G

trans-Zeatin 9-glucoside

ZOG

trans-Zeatin O-glucoside

ZROG

trans-Zeatin 9-riboside O-glucoside

ZRMP

trans-Zeatin 9-riboside-5′-monophosphate (abbreviations for cytokinins according to Kamínek et al. 2000)

Notes

Acknowledgments

This research was supported by a Bulgarian-Czech bilateral Academy of Sciences project and by GA AS CR (IAA600380701 and IAA600380805) and MEYS CR (LC06034 and 1M06030).

References

  1. Ananieva K, Malbeck J, Kamínek M, Van Staden J (2004) Changes in endogenous cytokinin levels in cotyledons of Cucurbita pepo (zucchini) during natural and dark-induced senescence. Physiol Plant 122:133–142CrossRefGoogle Scholar
  2. Ananieva K, Ananiev ED, Doncheva S, Georgieva K, Tzvetkova N, Kamínek M, Motyka V, Dobrev P, Gajdošová S, Malbeck J (2008) Senescence progression in a single darkened cotyledon depends on the light status of the other cotyledon in Cucurbita pepo (zucchini) seedlings: potential involvement of cytokinins and cytokinin oxidase/dehydrogenase activity. Physiol Plant 134:609–623PubMedCrossRefGoogle Scholar
  3. Armstrong D (1994) Cytokinin oxidase and the regulation of cytokinin degradation. In: Mok DWS, Mok MC (eds) Cytokinins: chemistry, activity and function. CRC Press, Boca Raton, pp 139–154Google Scholar
  4. Aro E-M, Virgin I, Andersson B (1993) Photoinhibition of photosystem. II. Inactivation, protein damage and turnover. Biochim Biophys Acta 1143:113–134PubMedCrossRefGoogle Scholar
  5. Biswal UC, Biswal B (1984) Photocontrol of leaf senescence. Photochem Photobiol 39:875–879CrossRefGoogle Scholar
  6. Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254PubMedCrossRefGoogle Scholar
  7. Buchanan-Wollaston V (1997) The molecular biology of leaf senescence. J Exp Bot 48:181–199CrossRefGoogle Scholar
  8. Buchanan-Wollaston V, Page T, Harrison E, Breeze E, Lim P, Nam H, Lin J-F, Wu S-H, Swidzinski J, Ishazaki K, Leaver C (2005) Comparative transcriptome analysis reveals significant differences in gene expression and signaling pathways between developmental and dark/starvation-induced senescence in Arabidopsis. Plant J 42:567–585PubMedCrossRefGoogle Scholar
  9. Chatfield JM, Armstrong DJ (1986) Regulation of cytokinin oxidase activity in callus tissues of Phaseolus vulgaris L. cv Great Northern. Plant Physiol 80:493–499PubMedCrossRefGoogle Scholar
  10. Chen Zh, Gallie DR (2004) The ascorbic acid redox state controls guard cell signaling and stomatal movement. Plant Cell 16:1143–1162PubMedCrossRefGoogle Scholar
  11. Christmann A, Weiler EW, Steudle E, Grill E (2007) A hydraulic signal in root-to-shoot signalling of water shortage. Plant J 52:167–174PubMedCrossRefGoogle Scholar
  12. Conrad K, Motyka V, Schlüter T (2007) Increase in activity, glycosylation and expression of cytokinin oxidase/dehydrogenase during the senescence of barley leaf segments in the dark. Physiol Plant 130:572–579CrossRefGoogle Scholar
  13. Dobrev PI, Kamínek M (2002) Fast and efficient separation of cytokinins from auxin and abscisic acid and their purification using mixed-mode solid-phase extraction. J Chromatogr A 950:21–29PubMedCrossRefGoogle Scholar
  14. Dobrev PI, Havlíček L, Vágner M, Malbeck J, Kamínek M (2005) Purification and determination of plant hormones auxin and abscisic acid using solid phase extraction and two-dimensional high performance liquid chromatography. J Chromatogr A 1075:159–166PubMedCrossRefGoogle Scholar
  15. Gan S (2004) The hormonal regulation of leaf senescence. In: Davies PJ (ed) Plant hormones: biosynthesis, signal transduction and action. Kluwer, Dordrecht, pp 561–581Google Scholar
  16. Gan S, Amasino RM (1995) Inhibition of leaf senescence by autoregulated production of cytokinin. Science 270:1966–1970CrossRefGoogle Scholar
  17. Gan S, Amasino RM (1996) Cytokinins in plant senescence from spray and pray to clone and play. Bioessays 18:557–565CrossRefGoogle Scholar
  18. Gaudinová A, Dobrev PI, Šolcová B, Novák O, Strnad M, Friedecký D, Motyka V (2005) The involvement of cytokinin oxidase/dehydrogenase and zeatin reductase in regulation of cytokinin levels in pea (Pisum sativum L.) leaves. J Plant Growth Regul 24:188–200CrossRefGoogle Scholar
  19. Genty B, Briantais J-M, Baker NR (1989) The relationship between the quantum yield of photosynthetic electron transport and quenching of chlorophyll fluorescence. Biochim Biophys Acta 990:87–92CrossRefGoogle Scholar
  20. Hare PD, Van Staden J (1994) Cytokinin oxidase: biochemical features and physiological significance. Physiol Plant 91:128–136CrossRefGoogle Scholar
  21. Havlova M, Dobrev P, Motyka V, Štorchová H, Libus J, Dobrá J, Malbeck J, Gaudinová A, Vaňková R (2008) The role of cytokinins in responses to water deficit in tobacco plants. Plant Cell Environ 31:341–353PubMedCrossRefGoogle Scholar
  22. Inskeep WP, Bloom PR (1985) Extinction coefficients of chlorophyll a and b in N,N-dimethylformamide and 80% acetone. Plant Physiol 77:483–485PubMedCrossRefGoogle Scholar
  23. Jiang F, Hartung W (2008) Long-distance signalling of abscisic acid (ABA): the factors regulating the intensity of the ABA signal. J Exp Bot 59:37–43PubMedCrossRefGoogle Scholar
  24. Kamínek M, Pačes V, Corse J, Challice JSD (1979) The effect of stereospecific hydroxylation of N6-(Δ2-isopentenyl)adenosine on cytokinin activity. Planta 145:239–245CrossRefGoogle Scholar
  25. Kamínek M, Motyka V, Vaňková R (1997) Regulation of cytokinin content in plant cells. Physiol Plant 101:689–700CrossRefGoogle Scholar
  26. Kamínek M, Březinová A, Gaudinová A, Motyka V, Vaňková R, Zažímalová E (2000) Purine cytokinins: a proposal of abbreviations. Plant Growth Regul 32:253–256CrossRefGoogle Scholar
  27. Keech O, Pesquet E, Ahad A, Askne A, Nordvall D, Vodnala SM, Tuominen H, Hurry V, Dizengremel P, Gardeström P (2007) The different fates of mitochondria and chloroplasts during dark-induced senescence in Arabidopsis leaves. Plant Cell Environ 30:1523–1534PubMedCrossRefGoogle Scholar
  28. Krause K, Falk J, Humbeck K, Krupinska K (1998) Responses of the transcriptional apparatus of barley chloroplasts to a prolonged dark period and to subsequent reillumination. Physiol Plant 104:143–152CrossRefGoogle Scholar
  29. Krupinska K, Humbeck K (2004) Photosynthesis and chloroplast breakdown. In: Noodén LD (ed) Plant cell death processes. Elsevier Science (USA), Academic Press, London, pp 169–187Google Scholar
  30. La Rocca N, Barbato R, Casadoro G, Rascio N (1996) Early degradation of photosynthetic membranes in carob and sunflower cotyledons. Physiol Plant 96:513–518CrossRefGoogle Scholar
  31. Leckie CP, McAinsh MR, Allen GJ, Sanders D, Hetherington AM (1998) Abscisic acid-induced stomatal closure mediated by cyclic ADP-ribose. Proc Natl Acad Sci USA 95:15837–15842PubMedCrossRefGoogle Scholar
  32. Letham DS, Palni LMS, Tao G-Q, Gollnow BI, Bates CM (1983) Regulators of cell division in plant tissues XXIX. The activities of cytokinin glucosides and alanine conjugates in cytokinin bioassays. J Plant Growth Regul 2:103–115CrossRefGoogle Scholar
  33. Lim PO, Kim HJ, Nam HG (2007) Leaf senescence. Annu Rev Plant Biol 58:115–136PubMedCrossRefGoogle Scholar
  34. Martin RC, Mok MC, Habben JE, Mok DWS (2001) A maize cytokinin gene encoding an O-glucosyltransferase specific to cis-zeatin. Proc Natl Acad Sci USA 98:5922–5926PubMedCrossRefGoogle Scholar
  35. Masferrer A, Arro M, Manzano D, Schaller H, Fernández-Busquets X, Moncaleán P, Fernández B, Cunillera N, Boronat A, Ferrer A (2002) Overexpression of Arabidopsis thaliana farnesyl diphosphate synthase (FPSIS) in transgenic Arabidopsis induces a cell death/senescence-like response and reduced cytokinin levels. Plant J 30:123–132PubMedCrossRefGoogle Scholar
  36. Mishev K, Stefanov D, Ananieva K, Slavov Ch, Ananiev ED (2009) Different effects of dark treatment on pigment composition and photosystem I and II activities in intact cotyledons and primary leaves of Cucurbita pepo (zucchini). Plant Growth Regul 58:61–71CrossRefGoogle Scholar
  37. Mishev K, Dimitrova A, Ananiev ED (2011) Darkness affects differentially the expression of plastid-encoded genes and delays the senescence-induced down-regulation of chloroplast transcription in cotyledons of Cucurbita pepo L. (zucchini). Zeitschrift Naturforsch 66c:159–166Google Scholar
  38. Mok MC (1994) Cytokinins and plant development. In: Mok DWC, Mok MC (eds) Cytokinins: chemistry, activity, and function. CRC Press, Boca Raton, pp 155–166Google Scholar
  39. Moran R, Porath D (1980) Chlorophyll determination in intact tissues using N,N-dimethylformamide. Plant Physiol 65:478–479PubMedCrossRefGoogle Scholar
  40. Motyka V, Vaňková R, Čapková V, Petrášek J, Kamínek M, Schmũlling T (2003) Cytokinin-induced upregulation of cytokinin oxidase activity in tobacco includes changes in enzyme glycosylation and secretion. Physiol Plant 117:11–21CrossRefGoogle Scholar
  41. Noodén LD (1988) Abscisic acid, auxin, and other regulators of senescence. In: Noodén LD, Leopold AC (eds) Senescence and aging in plants. Academic Press, San Diego, pp 329–367Google Scholar
  42. Noodén LD, Letham DS (1993) Cytokinin metabolism and signalling in the soybean plant. Aust J Plant Physiol 20:639–653CrossRefGoogle Scholar
  43. Noodén LD, Singh S, Letham DS (1990) Correlation of xylem sap cytokinin levels with monocarpic senescence in soybean. Plant Physiol 93:33–39PubMedCrossRefGoogle Scholar
  44. Noodén LD, Guiamet JJ, John I (1997) Senescence mechanisms. Physiol Plant 101:746–753CrossRefGoogle Scholar
  45. Ori N, Jackson MT, Yamaguchi J, Banowetz GM, Hake S (1999) Leaf senescence is delayed in tobacco plants expressing the maize homeobox gene knotted 1 under the control of a senescence-activated promoter. Plant Cell 11:1073–1080PubMedCrossRefGoogle Scholar
  46. Pourtau N, Mares M, Purdy S, Quentin N, Ruel A, Wingler A (2004) Interactions of abscisic acid and sugar signaling in the regulation of leaf senescence. Planta 219:765–772PubMedCrossRefGoogle Scholar
  47. Roelfsema MRG, Prins HBA (1995) Effect of abscisic acid on stomatal opening in isolated epidermal strips of abi mutants of Arabidopsis thaliana. Physiol Plant 95:373–378CrossRefGoogle Scholar
  48. Sakakibara H (2005) Cytokinin biosynthesis and regulation. Vitam Horm 72:271–287PubMedCrossRefGoogle Scholar
  49. Sambrook J, Russell DW (2001) Molecular cloning, a laboratory manual, 3rd edn. Cold Spring Harbor Laboratory Press, New YorkGoogle Scholar
  50. Sirichandra C, Wasilewska A, Vlad F, Valon C, Leung J (2009) The guard cell as a single-cell model towards understanding drought tolerance and abscisic acid action. J Exp Bot 60:1439–1463PubMedCrossRefGoogle Scholar
  51. Skoog F, Ghani AKBK (1981) Relative activities of cytokinins and antagonists in releasing lateral buds of Pisum from apical dominance compared to their relative activities in the regulation of growth of tobacco callus. In: Guern J, Péaud-Lenoël C (eds) Metabolism and molecular activities of cytokinins. Springer, Berlin, pp 140–150Google Scholar
  52. Smart CM (1994) Gene expression during leaf senescence. New Phytol 126:419–448CrossRefGoogle Scholar
  53. Spíchal L, Rakova NY, Riefler M, Mizuno T, Romanov GA, Strnad M, Schmülling T (2004) Two cytokinin receptors of Arabidopsis thaliana, CRE1/AHK4 and AHK3, differ in their ligand specificity in bacterial assay. Plant Cell Physiol 45:1299–1305PubMedCrossRefGoogle Scholar
  54. Tozawa Y, Teraishi M, Sasaki T, Sonoike K, Nishiyama Y, Itaya Y, Miyao A, Hirochika H (2007) The plastid sigma factor SIGI maintains photosystem I activity via regulated expression of the psaA operon in rice chloroplsts. Plant J 52:124–132PubMedCrossRefGoogle Scholar
  55. Tsukaya H, Tsuge T, Uchimiya H (1994) The cotyledon–a superior system for studies of leaf development. Planta 195:309–312CrossRefGoogle Scholar
  56. Tyystjärvi E, Karunen J (1990) A microcomputer program and fast analog to digital converter card for the analysis of fluorescence induction transients. Photosynth Res 26:127–132CrossRefGoogle Scholar
  57. Van der Graaff E, Schwacke R, Schneider A, Desimone M, Flugge U-I, Kunze R (2006) Transcriptional analysis of Arabidopsis membrane transporters and hormone pathways during developmental and induced leaf senescence. Plant Physiol 141:776–792PubMedCrossRefGoogle Scholar
  58. Van Staden J, Cook EL, Noodén LD (1988) Cytokinins and senescence. In: Noodén LD, Leopold AC (eds) Senescence and aging in plants. Academic Press, San Diego, pp 281–328Google Scholar
  59. Weaver LM, Amasino RM (2001) Senescence is induced in individually darkened Arabidopsis leaves, but inhibited in whole darkened plants. Plant Physiol 127:876–886PubMedCrossRefGoogle Scholar
  60. Weaver LM, Gan S, Quirino B, Amasino RM (1998) A comparison of the expression patterns of several senescence-associated genes in response to stress and hormone treatments. Plant Mol Biol 37:455–469PubMedCrossRefGoogle Scholar
  61. Werner T, Motyka V, Strnad M, Schmülling T (2001) Regulation of plant growth by cytokinin. Proc Natl Acad Sci USA 98:10487–10492PubMedCrossRefGoogle Scholar
  62. Werner T, Motyka V, Laucou V, Smets R, Van Onkelen H, Schmülling T (2003) Cytokinin-deficient transgenic Arabidopsis plants show multiple developmental alterations indicating opposite functions of cytokinins in the regulation of shoot and root meristem activity. Plant Cell 15:2532–2550PubMedCrossRefGoogle Scholar
  63. Xiong Y, Zhu JK (2003) Regulation of abscisic acid biosynthesis. Plant Physiol 133:29–36PubMedCrossRefGoogle Scholar
  64. Yamagishi M, Yamamoto Y (1994) Effect of boron on nodule development and symbiotic nitrogen fixation in soybean plants. Soil Sci Plant Nutr 40:265–274Google Scholar
  65. Yang SH, Berberich T, Sano H, Kusano T (2001) Specific association of transcripts of tbzF and tbz17, tobacco genes encoding basic region leucine zipper-type transcriptional activators, with guard cells of senescing leaves and/or flowers. Plant Physiol 127:23–32PubMedCrossRefGoogle Scholar
  66. Yonekura-Sakakibara K, Kojima M, Yamaya T, Sakakibara H (2004) Molecular characterization of cytokinin-responsive histidine kinases in maize. Differential ligand preferences and response to cis-zeatin. Plant Physiol 134:1654–1661PubMedCrossRefGoogle Scholar
  67. Zažímalová E, Kamínek M, Březinová A, Motyka V (1999) Control of cytokinin biosynthesis and metabolism. In: Hooykaas PJJ, Hall MA, Libbenga KR (eds) Biochemistry and molecular biology of plant hormones. Elsevier Science B.V., Amsterdam, pp 141–160CrossRefGoogle Scholar
  68. Zubo YO, Yamburenko MV, Selivankina SY, Shakirova FM, Avalbaev AM, Kudryakova NV, Zubkova NK, Liere K, Kulaeva ON, Kusnetsov VV, Börner T (2008) Cytokinin stimulates chloroplast transcription in detached barley leaves. Plant Physiol 148:1082–1093PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2011

Authors and Affiliations

  • Kalina Ananieva
    • 1
  • Evguéni D. Ananiev
    • 2
  • Snejana Doncheva
    • 1
  • Detelin Stefanov
    • 1
  • Kiril Mishev
    • 1
  • Miroslav Kamínek
    • 3
  • Vaclav Motyka
    • 3
  • Petre I. Dobrev
    • 3
  • Jiři Malbeck
    • 3
  1. 1.Institute of Plant Physiology and GeneticsBulgarian Academy of SciencesSofiaBulgaria
  2. 2.Department of Plant Physiology, Faculty of BiologySt. Kliment Ohridsky University of SofiaSofiaBulgaria
  3. 3.Institute of Experimental BotanyAcademy of Sciences of the Czech RepublicPrague 6Czech Republic

Personalised recommendations