Plant Growth Regulation

, Volume 65, Issue 3, pp 427–437 | Cite as

Changes in cytokinin levels and metabolism in tobacco (Nicotiana tabacum L.) explants during in vitro shoot organogenesis induced by trans-zeatin and dihydrozeatin

  • Marek Klemš
  • Zdeňka Slámová
  • Václav Motyka
  • Jiří Malbeck
  • Alena Trávníčková
  • Ivana Macháčková
  • Josef Holík
  • Stanislav Procházka
Original paper

Abstract

The uptake and metabolism of trans-zeatin and/or dihydrozeatin, in correlation with cytokinin oxidase/dehydrogenase (CKX) and β-glucosidase activity, were studied in leaf segments derived from wild-type (WT) and transgenic (T) tobacco (Nicotiana tabacum L. cv. Petit Havana SR1) during in vitro induction of shoot organogenesis. T explants harbored the maize gene Zm-p60.1β-glucosidase. Higher levels of shoot regeneration were observed on T explants in the early stages of cultivation. In WT explants, the content of cytokinin (CK)-O- and N-glucosides increased. In T explants, a higher content of Z-9-riboside and Z-9-riboside-5′-monophosphate and higher CKX activity during the early stage of cultures were found. A positive correlation was obtained for bioactive CK content and the organogenic response in T explants. Our results indicate a connection between the organogenic capacity of tobacco explants, metabolism of endogenous CKs and uptake of exogenous CKs from the cultivation medium.

Keywords

β-glucosidase Cytokinin oxidase/dehydrogenase Dihydrozeatin Organogenesis in vitro trans-zeatin 

Abbreviations

BA

N6-benzyladenine

CK

Cytokinin

CKX

Cytokinin oxidase/dehydrogenase

2,4-D

2,4-dichlorophenoxyacetic acid

DHZ

Dihydrozeatin

DHZR

Dihydrozeatin-9-riboside

DHZRMP

Dihydrozeatin-9-riboside-5′-monophosphate

DHZOG

Dihydrozeatin-O-glucoside

DHZROG

Dihydrozeatin-9-riboside-O-glucoside

DHZ7G

Dihydrozeatin-7-glucoside

DHZ9G

Dihydrozeatin-9-glucoside

GRZ+

Induction medium containing trans-zeatin

GRDHZ+

Induction medium containing dihydrozeatin

GR−

Growth regulator-free medium

GRZ+/GR−

Subcultivation from zeatin induction to growth regulator-free medium

GRDHZ+/GR−

Subcultivation from dihydrozeatin induction to growth regulator-free medium

IBA

Indole-3-butyric acid

iP

N6-(Δ2-isopentenyl)adenine

ipt

Gene coding isopentenyltransferase

iP7G

N6-(Δ2-isopentenyl)adenine-7-glucoside

T

Transgenic tobacco

WT

Wild-type tobacco

Z

trans-zeatin

ZR

trans-zeatin-9-riboside

ZRMP

trans-zeatin-9-riboside-5′-monophosphate

ZOG

trans-zeatin-O-glucoside

Z7G

trans-zeatin-7-glucoside (abbreviations for cytokinins according to Kamínek et al. 2000)

Notes

Acknowledgments

This study was funded by the Ministry of Education for Youth and Sports of the Czech Republic (1M0603 and LC06034), the Czech Science Foundation (P506/11/0774), the Grant Agency of the Academy of Sciences of the Czech Republic (IAA 600380701) and the Grant Agency of MUAF (IGA 4/4).

References

  1. Allen M, Qin WS, Moreau F, Moffatt B (2002) Adenine phosphoribosyltransferase isoforms of Arabidopsis and their potential contributions to adenine and cytokinin metabolism. Physiol Plant 115:56–68PubMedCrossRefGoogle Scholar
  2. Armstrong DJ (1994) Cytokinin oxidase and the regulation of cytokinin degradation. In: Mok DWS, Mok MC (eds) Cytokinins: chemistry, activity and function. CRC Press, Boca Raton, FL, pp 139–154Google Scholar
  3. Auer CA, Motyka V, Březinová A, Kamínek M (1999) Endogenous cytokinin accumulation and cytokinin oxidase activity during shoot organogenesis of Petunia hybrida. Physiol Plant 105:141–147CrossRefGoogle Scholar
  4. Blagoeva E, Dobrev PI, Malbeck J, Motyka V, Gaudinová A, Vaňková R (2004) Effect of exogenous cytokinins, auxins and adenine on cytokinin N-glucosylation and cytokinin oxidase/dehydrogenase activity in de-rooted radish seedlings. Plant Growth Regul 44:15–23CrossRefGoogle Scholar
  5. Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254PubMedCrossRefGoogle Scholar
  6. Brzobohatý B, Moore I, Kristoffersen P, Bako L, Campos N, Schell J, Palme K (1993) Release of active cytokinin by β-glucosidase localized to the maize root meristem. Science 262:051–1054CrossRefGoogle Scholar
  7. Brzobohatý B, Moore I, Palme K (1994) Cytokinin metabolism: implication for regulation of plant growth and development. Plant Mol Biol 26:1483–1497PubMedCrossRefGoogle Scholar
  8. Casanova E, Valdés AE, Fernandés B, Moysset L, Trillas MI (2004) Levels and immunolocalization of endogenous cytokinins in thidiazuron-induced shoot organogenesis in carnation. J Plant Physiol 161:95–104PubMedCrossRefGoogle Scholar
  9. Centeno ML, Rodríguez A, Feito I, Sánches-Tamés R, Fernandés B (2003) Uptake and metabolism of N6-benzyladenine and 1-naphthaleneacetic acid and dynamics of indole-3-acetic acid and cytokinins in two callus lines of Actinidia deliciosa differing in growth and shoot organogenesis. Physiol Plant 118(4):579–588CrossRefGoogle Scholar
  10. Chatfield JM, Armstrong DJ (1986) Regulation of cytokinin oxidase activity in callus tissues of Phaseolus vulgaris L. cv. Great Northern. Plant Physiol 80:493–499PubMedCrossRefGoogle Scholar
  11. Christianson ML, Warnick DA (1984) Phenocritical times in the process of in vitro shoot organogenesis. Develop Biol 101:382–390PubMedCrossRefGoogle Scholar
  12. Collier MD, Sheppard LJ, Crossley A, Hanke DE (2003) Needle cytokinin content as a sensitive bioindicator of N pollution in Sitka spruce. Plant Cell Environ 26:1929–1939CrossRefGoogle Scholar
  13. Crouch NR, van Staden J (1995) Promotion by 2, 4-D of 7-glucosylation of benzyladenine in seed-derived and shoot apex-derived cell culture of Dianthus zeyheri. Physiol Plant 93:645–650CrossRefGoogle Scholar
  14. Dhaliwal HS, Ramesar-Fortner NS, Yeung EC, Thorpe TA (2003) Competence, determination, and meristemoid plasticity in tobacco organogenesis in vitro. Canad J Bot 81:611–621CrossRefGoogle Scholar
  15. Dobrev PI, Kamínek M (2002) Fast and efficient separation of cytokinins from auxin and abscisic acid and their purification using mixed-mode solid-phase extraction. J Chromatography A 950:21–29CrossRefGoogle Scholar
  16. Gamborg OL, Miller RA, Ojima K (1968) Nutrient requirements of suspension cultures of soybean root cells. Exp Cell Res 50:151–158PubMedCrossRefGoogle Scholar
  17. Gaudinová A, Dobrev PI, Šolcová B, Novák O, Strnad M, Friedecký D, Motyka V (2005) The involvement of cytokinin oxidase/dehydrogenase and zeatin reductase in regulation of cytokinin levels in pea (Pisum sativum L.) leaves. J Plant Growth Regul 24:188–200CrossRefGoogle Scholar
  18. Haberer G, Kieber JJ (2002) Cytokinins. New insights into a classic phytohormone. Plant Physiol 128:354–362PubMedCrossRefGoogle Scholar
  19. Hou B, Lim E-K, Higgins GS, Bowles DJ (2004) N-Glucosylation of cytokinins by glycosyltransferases of Arabidopsis thaliana. J Biol Chem 279:47822–47832PubMedCrossRefGoogle Scholar
  20. Jelic G, Bogdanovic M (1990) The relationship between chlorophyll accumulation and endogenous cytokinin in the greening cotyledons of Pinus nigra. Plant Sci 71(2):53–157CrossRefGoogle Scholar
  21. Kakimoto T (2003) Perception and signal transduction of cytokinins. Ann Rev Plant Biol 54:605–627CrossRefGoogle Scholar
  22. Kamínek M, Armstrong DJ (1990) Genotypic variation in cytokinin oxidase from Phaseolus callus-cultures. Plant Physiol 93:1530–1538PubMedCrossRefGoogle Scholar
  23. Kamínek M, Březinová A, Gaudinová A, Motyka V, Vaňková R, Zažímalová E (2000) Purine cytokinins: a proposal of abbreviations. Plant Growth Regul 32:253–256CrossRefGoogle Scholar
  24. Kiran NS, Polanská L, Fohlerová R, Mazura P, Válková M, Šmeral M, Zouhar J, Malbeck J, Dobrev PI, Macháčková I, Brzobohatý B (2006) Ectopic over-expression of the maize β-glucosidase Zm-p60.1 perturbs cytokinin homeostasis in transgenic tobacco. J Exp Bot 57:985–996PubMedCrossRefGoogle Scholar
  25. Letham DS (1963) Zeatin, a factor inducing cell division from Zea mays. Life Sci 8:596–599Google Scholar
  26. Lexa M, Genkov T, Malbeck J, Macháčková I, Brzobohatý B (2003) Dynamic of endogenous cytokinin pools in tobacco seedlings: a modeling approach. Ann Bot 91:585–597PubMedCrossRefGoogle Scholar
  27. Ma QH, Lin ZB, Fu DZ (2002) Increased seed cytokinin levels in transgenic tobacco influence embryo and seedling development. Func Plant Biol 29:1107–1113CrossRefGoogle Scholar
  28. Malá J, Gaudinová A, Dobrev P, Eder J, Cvikrová M (2005) Role of phytohormones inorganogenic ability of elm multiplicated shoots. Biol Plant 50(1):8–14CrossRefGoogle Scholar
  29. Martin RC, Mok MC, Shaw G, Mok DW (1989) An enzyme mediating the conversion of zeatin to dihydrozeatin in Phaseolus embryo. Plant Physiol 90:1630–1635PubMedCrossRefGoogle Scholar
  30. McGaw BA, Burch LR (1995) Cytokinin biosynthesis and metabolism. In: Davies PJ (ed) Plant hormones: physiology, biochemistry and molecular biology. Kluwer Academic Publisher, DortrechtGoogle Scholar
  31. McGaw BA, Scott IM, Horgan R (1984) Cytokinin biosynthesis and metabolism. In: Crosier A, Hilmann JP (eds) Biosynthesis and metabolism of plant hormones. Cambridge University Press, Cambridge, pp 105–133Google Scholar
  32. Moffatt B, Pethe C, Laloue M (1991) Metabolism of benzyladenine is impaired in a mutant of Arabidopsis thaliana lacking adenine phosphoribosyltransferase activity. Plant Physiol 95:900–908PubMedCrossRefGoogle Scholar
  33. Mok DWS, Mok MC (2001) Cytokinin metabolism and action. Ann Rev Plant Physiol Plant Mol Biol 52:89–118CrossRefGoogle Scholar
  34. Mok MC, Martin RC, Dobrev PI, Vaňková R, Ho PS, Yonekura-Sakakibara K, Sakakibara H, Mok DWS (2005) Topolins and hydroxylated thidiazuron derivatives are substrates of cytokinin thidiazuron derivatives O-glucosyltransferase with position specificity related to receptor recognition Plant Physiol 137:1057–1066Google Scholar
  35. Moncaleán P, Alonso P, Centeno ML, Cortizo M, Rodríguez A, Fernández B, Ordás RJ (2005) Organogenic responses of Pinus pinea cotyledons to hormonal treatments: BA metabolism and cytokinin content. Tree Physiol 25:1–9PubMedGoogle Scholar
  36. Motyka V, Kamínek M (1992) Characterization of cytokinin oxidase from tobacco and poplar casus cultures. In: Kamínek M, Mok DWS, Zažímalová E (eds) Physiology and biochemistry of cytokinins in plants. SPB Academic Publishing, The Hague, pp 33–39Google Scholar
  37. Motyka V, Faiss M, Strnad M, Kaamínek M, Schműlling T (1996) Changes in cytokinin content and cytokinin oxidase activity in response to derepression of ipt gene transcription in transgenic tobacco calli and plants. Plant Physiol 112:1035–1043PubMedGoogle Scholar
  38. Motyka V, Vaňková R, Čapková V, Petrášek J, Kamínek M, Schműlling T (2003) Cytokinin-induced upregulation of cytokinin oxidase activity in tobacco includes changes in enzyme glycosylation and secretion. Physiol Plant 117:11–21CrossRefGoogle Scholar
  39. Murashige T, Skoog F (1962) A revised medium for rapid growth and bioassays with tobacco tissue cultures. Physiol Plant 15:473–497CrossRefGoogle Scholar
  40. Rao SM, Ravishankar GA (2002) Plant cell cultures: Chemical factories of secondary metabolites. Biotechnol Advances 20:101–153CrossRefGoogle Scholar
  41. Rotrekl V, Nejedlá E, Kučera I, Abdallah F, Palme K, Brzobohatý B (1999) The role of cysteine residues in structure and enzyme activity of a maize β-glucosidase. Europ J Biochem 266:1056–1065PubMedCrossRefGoogle Scholar
  42. Sakakibara H (2006) Cytokinins: activity, biosynthesis, and translocation. Ann Rev Plant Biol 57:431–449CrossRefGoogle Scholar
  43. Skoog F, Miller CO (1957) Chemical regulation of growth and organ formation in plant tissues cultured in vitro. In: Porter HK (ed). The biological action of growth substances. Acadamic Press, New York, pp 118−131Google Scholar
  44. Sondheimer E, Tzou DS (1971) The metabolism of hormones during seed germination and dormancy II. The metabolism of 8–14C-zeatin in bean axes. Plant Physiol 47:516–520PubMedCrossRefGoogle Scholar
  45. Souza BM, Kraus JE, Enders L, Mercier H (2003) Relationships between endogenous hormonal levels and axillary bud development of Ananas comosus nodal segments. Plant Physiol Biochem 41:733–739CrossRefGoogle Scholar
  46. Sugiyama M (1999) Organogenesis in vitro. Curr Opin Plant Biol 2(1):61–64PubMedCrossRefGoogle Scholar
  47. van der Krieken WM, Croes AF, Smulders MJ, Wullems GJ (1990) Cytokinin and flower bud formation in vitro in tobacco. Plant Physiol 92:565–569PubMedCrossRefGoogle Scholar
  48. van Staden J, Crouch NR (1996) Benzyladenine and derivates—their significance and interconversion in plants. Plant Growth Regul (19):153–175Google Scholar
  49. Vaňková R (1999) Cytokinin glucoconjugates–distribution, metabolism and function. In: Strnad M, Peč P, Beck E (eds) Advances in regulation of plant growth and development. Peres Publishers, Prague, pp 67–78Google Scholar
  50. Vaňková R, Gaudinová A, Kamínek M, Eder J (1992) The effect of interaction of syntetic cytokinin and auxin on production of natural cytokinin by immobilised of tobacco cells. In: Kamínek M, Mok DWS, Zažímalová E (eds) Physiology and biochemistry of cytokinins in plants. SPB Academic Publishings, The HagueGoogle Scholar
  51. Werbrouck SPO, Strnad M, Van Onckelen HA, Deberght PC (1996) Meta-topolin, an alternative to benzyladenine in tissue culture. Physiol Plant 98:291–297CrossRefGoogle Scholar
  52. Yamaguchi M, Kato H, Yoshida S, Yamamura S, Uchimiya H, Umeda M (2003) Control of in vitro organogenesis by cyclin-dependent kinase activities in plants. PNAS 100(13):8019–8023PubMedCrossRefGoogle Scholar
  53. Zhang R, Zhang X, Wang J, Letham DS, Mckinney SA, Higgins TJV (1995) The effect of auxin on cytokinin levels and metabolism in transgenic tobacco tissue expressing an ipt gene. Planta 196:84–94CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2011

Authors and Affiliations

  • Marek Klemš
    • 1
  • Zdeňka Slámová
    • 1
  • Václav Motyka
    • 2
  • Jiří Malbeck
    • 2
  • Alena Trávníčková
    • 2
  • Ivana Macháčková
    • 2
  • Josef Holík
    • 3
  • Stanislav Procházka
    • 1
  1. 1.Department of Plant BiologyMendel UniversityBrnoCzech Republic
  2. 2.Institute of Experimental BotanyAcademy of Sciences of the Czech RepublicLysolaje, Prague 6Czech Republic
  3. 3.Isotope LaboratoryInstitute of Experimental Botany, Academy of Sciences of the Czech RepublicPrague 4Czech Republic

Personalised recommendations