Plant Growth Regulation

, Volume 59, Issue 1, pp 37–49 | Cite as

Nickel-induced oxidative stress and the role of antioxidant defence in rice seedlings

  • Ruchi Maheshwari
  • R. S. Dubey
Original Paper


Seedlings of rice (Oryza sativa L.) cv. Pant-12 grown in sand cultures containing 200 and 400 μM NiSO4, showed a decrease in length and fresh weight of roots and shoots. Nickel was readily taken up by rice seedlings and the concentration was higher in roots than shoots. Nickel-treated seedlings showed increased rates of superoxide anion (O 2 •− ) production, elevated levels of H2O2 and thiobarbituric acid reactive substances (TBARS) demonstrating enhanced lipid peroxidation, and a decline in protein thiol levels indicative of increased protein oxidation compared to controls. With progressively higher Ni concentrations, non-protein thiol and ascorbate (AsA) increased, whereas the level of low-molecular-weight thiols (such as glutathione and hydroxyl-methyl glutathione), the ratio of these thiols to their corresponding disulphides, and the ratio of AsA to dehydroascorbic acid declined in the seedlings. Among the antioxidant enzymes studied, the activities of all isoforms of superoxide dismutase (Cu-Zn SOD, Mn SOD and Fe SOD), guaiacol peroxidases (GPX) and ascorbate peroxidase (APX) increased in Ni-treated seedlings, while no clear alteration in catalase activity was evident. Activity of the ascorbate-glutathione cycle enzymes monodehydroascorbate reductase (MDHAR), dehydroascorbate reductase (DHAR) and glutathione reductase (GR)—significantly increased in Ni-treated seedlings. However such increase was apparently insufficient to maintain the intracellular redox balance. Results suggest that Ni induces oxidative stress in rice plants, resulting in enhanced lipid peroxidation and decline in protein thiol levels, and that (hydroxyl-methyl) glutathione and AsA in conjunction with Cu-Zn SOD, GPX and APX are involved in stress response.


Antioxidants Ascorbate Glutathione Isoform Nickel Oxidative stress Reactive oxygen species Rice Oryza sativa L. 


  1. Apel K, Hirt H (2004) Reactive oxygen species: metabolism, oxidative stress, and signal transduction. Annu Rev Plant Biol 55:373–399. doi: 10.1146/annurev.arplant.55.031903.141701 PubMedCrossRefGoogle Scholar
  2. Asada K (1999) The water cycle in chloroplast: scavenging of active oxygen and dissipation of excess photons. Annu Rev Plant Physiol Plant Mol Biol 50:601–639. doi: 10.1146/annurev.arplant.50.1.601 PubMedCrossRefGoogle Scholar
  3. Baccouch S, Chaoui A, El Ferjani E (2001) Nickel toxicity induces oxidative damage in Zea mays roots. J Plant Nutr 24:1085–1097. doi: 10.1081/PLN-100103805 CrossRefGoogle Scholar
  4. Bandeoğlu E, Eyidoğan F, Yücel M, Öktem HA (2004) Antioxidant responses of shoots and roots of lentil to NaCl-salinity stress. Plant Growth Regul 42:69–77. doi: 10.1023/B:GROW.0000014891.35427.7b CrossRefGoogle Scholar
  5. Beers RF, Sizer IW (1952) Colorimetric method for estimation of catalase. J Biol Chem 195:133–139PubMedGoogle Scholar
  6. Boominathan R, Doran PM (2002) Ni-induced oxidative stress in roots of the Ni hyperaccumulator, Alyssum bertolonii. New Phytol 156:205–215. doi: 10.1046/j.1469-8137.2002.00506.x CrossRefGoogle Scholar
  7. Bradford MM (1976) A rapid and sensitive method for the quantification of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254. doi: 10.1016/0003-2697(76)90527-3 PubMedCrossRefGoogle Scholar
  8. Cobbett C, Goldsbrough P (2002) Phytochelatins and metallothioneins. Roles in heavy metal detoxification and homeostasis. Annu Rev Plant Biol 53:159–182. doi: 10.1146/annurev.arplant.53.100301.135154 PubMedCrossRefGoogle Scholar
  9. Dat J, Vandenabeele S, Vranova E, Van Montagu M, Inze D, Van Breusegem F (2000) Dual action of the active oxygen species during plant stress responses. Cell Mol Life Sci 57:779–795. doi: 10.1007/s000180050041 PubMedCrossRefGoogle Scholar
  10. de Kok LJ, Kuiper PJC (1986) Effect of short-term dark incubation with chloride and selenate on the glutathione content of spinach leaf discs. Physiol Plant 68:477–482. doi: 10.1111/j.1399-3054.1986.tb03385.x CrossRefGoogle Scholar
  11. De Vos CHR, Vonk MJ, Vooijs RV, Schat H (1992) Glutathione depletion due to copper induced phytochelatin synthesis causes oxidative stress in Silene cucubalus. Plant Physiol 98:853–858. doi: 10.1104/pp.98.3.853 PubMedCrossRefGoogle Scholar
  12. Demirevska-Kepova K, Simova-Stoilova L, Stoyanova Z, Hölzer R, Feller U (2004) Biochemical changes in barley plants after excessive supply of copper and manganese. Environ Exp Bot 52:253–266. doi: 10.1016/j.envexpbot.2004.02.004 CrossRefGoogle Scholar
  13. Doulis A, Debian N, Kingston-Smith A, Foyer CH (1997) Characterization of chilling sensitivity in maize: differential localization of antioxidants in maize leaves. Plant Physiol 114:1031–1037PubMedGoogle Scholar
  14. Egley GH, Paul RN, Vaughn KC, Duke SO (1983) Role of peroxidase in the development of water impermeable seed coats in Sida spinosa L. Planta 157:224–232. doi: 10.1007/BF00405186 CrossRefGoogle Scholar
  15. Fecht-Christoffers MM, Maier P, Horst WJ (2003) Apoplastic peroxidase and ascorbate are involved in manganese toxicity and tolerance of Vigna unguiculata. Physiol Plant 117:237–244. doi: 10.1034/j.1399-3054.2003.00022.x CrossRefGoogle Scholar
  16. Freeman JL, Persans MW, Nieman K, Albrecht C, Peer W, Pickering IJ, Salt DE (2004) Increased glutathione biosynthesis plays a role in nickel tolerance in Thlaspi nickel hyperaccumulators. Plant Cell 16:2176–2191. doi: 10.1105/tpc.104.023036 PubMedCrossRefGoogle Scholar
  17. Gajewska E, Skłodowska M (2005) Antioxidative responses and proline level in leaves and roots of pea plants subject to nickel stress. Acta Physiol Plant 27(3B):329–339. doi: 10.1007/s11738-005-0009-3 CrossRefGoogle Scholar
  18. Gajewska E, Skłodowska M (2008) Differential biochemical responses of wheat shoots and roots to nickel stress: antioxidative reactions and proline accumulation. Plant Growth Regul 54:179–188. doi: 10.1007/s10725-007-9240-9 CrossRefGoogle Scholar
  19. Galli U, Schüepp H, Brunold C (1996) Thiols in cadmium and copper-treated maize (Zea mays L.). Planta 198:139–143. doi: 10.1007/BF00197596 CrossRefGoogle Scholar
  20. Gawel JE, Trick CG, Morel FMM (2001) Phytochelatins are bioindicators of atmospheric metal exposure via direct foliar uptake in trees near Sudbury, Ontario, Canada. Environ Sci Technol 35:2108–2113. doi: 10.1021/es0016250 PubMedCrossRefGoogle Scholar
  21. Gonnelli C, Galardi F, Gabbrielli R (2001) Nickel and copper tolerance and toxicity in three Tuscan populations of Silene paradoxa. Physiol Plant 113:507–514. doi: 10.1034/j.1399-3054.2001.1130409.x CrossRefGoogle Scholar
  22. Gratão PL, Polle A, Lea PJ, Azevedo RA (2005) Making the life of heavy metal-stressed plants a little easier. Funct Plant Biol 32:481–494. doi: 10.1071/FP05016 CrossRefGoogle Scholar
  23. Griffith OW (1980) Determination of glutathione disulphide using glutathione reductase and 2-vinylpyridine. Anal Biochem 106:207–212. doi: 10.1016/0003-2697(80)90139-6 PubMedCrossRefGoogle Scholar
  24. Hao F, Wang X, Chen J (2006) Involvement of plasma-membrane NADPH oxidase in nickel-induced oxidative stress in roots of wheat seedlings. Plant Sci 170:151–158. doi: 10.1016/j.plantsci.2005.08.014 CrossRefGoogle Scholar
  25. Heath RL, Packer L (1968) Photoperoxidation in isolated chloroplasts. I-Kinetics and stoichiometry of fatty acid peroxidation. Arch Biochem Biophys 125:189–198. doi: 10.1016/0003-9861(68)90654-1 PubMedCrossRefGoogle Scholar
  26. Hernández JA, Escobar C, Creissen G, Mullineaux PM (2004) Role of hydrogen peroxide and the redox state of ascorbate in the induction of antioxidant enzymes in pea leaves under excess light stress. Funct Plant Biol 31:359–368. doi: 10.1071/FP03246 CrossRefGoogle Scholar
  27. Hoagland DR, Arnon DI (1938) The water-culture method for growing plants without soil. Cal Agric Exp Sta Cir 3:346–347Google Scholar
  28. Hossain MA, Nakano Y, Asada K (1984) Monodehydroascorbate reductase in spinach chloroplast and its participation in regeneration of ascorbate for scavenging hydrogen peroxide. Plant Cell Physiol 25:385–395Google Scholar
  29. Hsu YT, Kao CH (2004) Cadmium toxicity is reduced by nitric oxide in rice leaves. Plant Growth Regul 42:227–238. doi: 10.1023/B:GROW.0000026514.98385.5c CrossRefGoogle Scholar
  30. Jana S, Choudhuri MA (1981) Glycolate metabolism of three submerged aquatic angiosperms during aging. Aquat Bot 12:345–354. doi: 10.1016/0304-3770(82)90026-2 CrossRefGoogle Scholar
  31. Kabata-Pendias A, Pendias H (1992) Trace elements in soils and plants, 2nd edn. CRC Press, Boca Raton, pp 131–142Google Scholar
  32. Kim SY, Lim JH, Park MR, Kim YJ, Park TII, Seo YW, Choi KG, Yun SJ (2005) Enhanced antioxidant enzymes are associated with reduced hydrogen peroxide in barley roots under saline stress. J Biochem Mol Biol 38(2):218–224PubMedGoogle Scholar
  33. Klapheck S, Fliegner W, Zimmer I (1994) Hydroxymethyl-phytochelatins [(gamma- glutamyl-cysteine)n,-Serine] are metal-induced peptides of the Poaceae. Plant Physiol 104:1325–1332. doi: 10.1104/pp.104.4.1325 PubMedCrossRefGoogle Scholar
  34. Kocsy G, Kobrehel K, Szalai G, Duviau MP, Buzás Z, Galiba G (2004) Abiotic stress-induced changes in glutathione and thioredoxin h levels in maize. Environ Exp Bot 52:101–112. doi: 10.1016/j.envexpbot.2004.01.008 CrossRefGoogle Scholar
  35. Law MY, Charles SA, Halliwell B (1983) Glutathione and ascorbic acid in spinach (Spinacea oleracea) chloroplasts: the effect of hydrogen peroxide and paraquat. Biochem J 210:899–903PubMedGoogle Scholar
  36. Maheshwari R, Dubey RS (2007) Nickel toxicity inhibits ribonuclease and protease activities in rice seedlings: protective effects of proline. Plant Growth Regul 51:231–243. doi: 10.1007/s10725-006-9163-x CrossRefGoogle Scholar
  37. Maheshwari R, Dubey RS (2008) Inhibition of ribonuclease and protease activities in germinating rice seeds exposed to nickel. Acta Physiol Plant 30:863–872. doi: 10.1007/s11738-008-0192-0 CrossRefGoogle Scholar
  38. Marschner H (1995) Mineral nutrition of higher plants, 2nd edn. Academic Press, LondonGoogle Scholar
  39. Mishra S, Dubey RS (2006) Heavy metal uptake and detoxification mechanisms in plants. Int J Agric Res 1:122–141. doi: 10.3923/ijar.2006.122.141 CrossRefGoogle Scholar
  40. Misra HP, Fridovich I (1971) The generation of superoxide radicals during the auto-oxidation of ferredoxins. J Biol Chem 246:6886–6890PubMedGoogle Scholar
  41. Misra HP, Fridovich I (1972) The role of superoxide anion in the auto-oxidation of epinephrine and a simple assay for superoxide dismutase. J Biol Chem 247:3170–3175PubMedGoogle Scholar
  42. Mittler R, Vanderauwera S, Gollery M, Breusegem FV (2004) Reactive oxygen gene network of plants. Trends Plant Sci 9:490–498. doi: 10.1016/j.tplants.2004.08.009 PubMedCrossRefGoogle Scholar
  43. Moran JF, Becana M, Iturbe-Ormaetxe I, Frechilla S, Klucas RV, Aparicio-Tejo P (1994) Drought induced oxidative stress in pea plants. Planta 194:346–352. doi: 10.1007/BF00197534 CrossRefGoogle Scholar
  44. Nakano Y, Asada K (1981) Hydrogen peroxide is scavenged by ascorbate-specific peroxidase in spinach chloroplasts. Plant Cell Physiol 22:867–880Google Scholar
  45. Noctor G, Foyer CH (1998) Ascorbate and glutathione: keeping active oxygen under control. Annu Rev Plant Physiol Plant Mol Biol 49:249–279. doi: 10.1146/annurev.arplant.49.1.249 PubMedCrossRefGoogle Scholar
  46. Parida BK, Chhibba IM, Nayyar VK (2003) Influence of nickel-contaminated soils on fenugreek (Trigonella corniculata L.) growth and mineral composition. Sci Hortic (Amsterdam) 98:113–119. doi: 10.1016/S0304-4238(02)00208-X CrossRefGoogle Scholar
  47. Prasad KVSK, Saradhi PP, Sharmila P (1999) Concerted action of antioxidant enzymes and curtailed growth under zinc toxicity in Brassica juncea. Environ Exp Bot 42:1–10. doi: 10.1016/S0098-8472(99)00013-1 CrossRefGoogle Scholar
  48. Radotic K, Ducic T, Mutavdzic D (2000) Changes in peroxidase activity and isozymes in spruce needles after exposure to different concentrations of cadmium. Environ Exp Bot 44:105–113. doi: 10.1016/S0098-8472(00)00059-9 PubMedCrossRefGoogle Scholar
  49. Rao KVM, Sresty TVS (2000) Antioxidative parameters in the seedlings of pigeon pea (Cajnus cajan (L.) Millspaugh) in response to Zn and Ni stresses. Plant Sci 157:113–128. doi: 10.1016/S0168-9452(00)00273-9 CrossRefGoogle Scholar
  50. Reeves RD, Baker AJM, Borhidi A, Berazain R (1999) Nickel-hyperaccumulation in the serpentine flora of Cuba. Ann Bot (Lond) 83:29–38. doi: 10.1006/anbo.1998.0786 CrossRefGoogle Scholar
  51. Rubio MI, Escrig I, Martinez-Cortina C, Lopez-Banet FJ, Sanz A (1994) Cadmium and nickel accumulation in rice plants: effects on mineral nutrition and possible interactions of abscisic and gibberellic acids. Plant Growth Regul 14:151–157. doi: 10.1007/BF00025217 CrossRefGoogle Scholar
  52. Schaedle M, Bassham JA (1977) Chloroplast glutathione reductase. Plant Physiol 59:1011–1012. doi: 10.1104/pp.59.5.1011 PubMedCrossRefGoogle Scholar
  53. Seregin IV, Kozhevnikova AD (2006) Physiological role of nickel and its toxic effects on higher plants. Russ J Plant Physiol 53:257–277. doi: 10.1134/S1021443706020178 CrossRefGoogle Scholar
  54. Shah K, Kumar RG, Verma S, Dubey RS (2001) Effect of cadmium on lipid peroxidation, superoxide anion generation and activities of antioxidant enzymes in growing rice seedlings. Plant Sci 161:1135–1144. doi: 10.1016/S0168-9452(01)00517-9 CrossRefGoogle Scholar
  55. Sharma P, Dubey RS (2005) Drought induces oxidative stress and enhances the activities of antioxidative enzymes in growing rice seedlings. Plant Growth Regul 46(3):209–221. doi: 10.1007/s10725-005-0002-2 CrossRefGoogle Scholar
  56. Sharma P, Dubey RS (2007) Involvement of oxidative stress and role of antioxidative defense system in growing rice seedlings exposed to toxic concentrations of aluminum. Plant Cell Rep 26:2027–2038. doi: 10.1007/s00299-007-0416-6 PubMedCrossRefGoogle Scholar
  57. Smirnoff N, Conklin PL, Loewus FA (2001) Biosynthesis of ascorbic acid in plants: a renaissance. Annu Rev Plant Physiol Plant Mol Biol 52:437–467. doi: 10.1146/annurev.arplant.52.1.437 PubMedCrossRefGoogle Scholar
  58. Stohs SJ, Bagchi D (1995) Oxidative mechanisms in the toxicity of metal ions. Free Radic Biol Med 18(2):321–336. doi: 10.1016/0891-5849(94)00159-H PubMedCrossRefGoogle Scholar
  59. Tamás L, Šimonovičová M, Huttová J, Mistrík I (2004) Aluminium stimulated hydrogen peroxide production of germinating barley seeds. Environ Exp Bot 51:281–288. doi: 10.1016/j.envexpbot.2003.11.007 CrossRefGoogle Scholar
  60. Ushimaru T, Kanematsu S, Shibasaka M, Tsuji H (1999) Effect of hypoxia on antioxidant enzymes in aerobically grown rice (Oryza sativa) seedlings. Physiol Plant 107:181–187. doi: 10.1034/j.1399-3054.1999.100205.x CrossRefGoogle Scholar
  61. Verma S, Dubey RS (2003) Lead toxicity induces lipid peroxidation and alters the activities of antioxidant enzymes in growing rice plants. Plant Sci 164:645–655. doi: 10.1016/S0168-9452(03)00022-0 CrossRefGoogle Scholar
  62. Yang XE, Baligar VC, Foster JC, Martens DC (1997) Accumulation and transport of nickel in relation to organic acids in ryegrass and maize grown with different nickel levels. Plant Soil 196:271–276. doi: 10.1023/A:1004270528532 CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2009

Authors and Affiliations

  1. 1.Department of Biochemistry, Faculty of ScienceBanaras Hindu UniversityVaranasiIndia

Personalised recommendations