Plant Growth Regulation

, Volume 58, Issue 3, pp 251–260 | Cite as

Sugars induce anthocyanin accumulation and flavanone 3-hydroxylase expression in grape berries

  • Yanjun Zheng
  • Li Tian
  • Hongtao Liu
  • Qiuhong Pan
  • Jicheng Zhan
  • Weidong Huang
Original Paper


Flavanone 3-hydroxylase (EC, F3H) plays a key role in anthocyanin biosynthesis, and sugars enhance anthocyanin accumulation and F3H expression in some other plants. However, information about the relationship between sugars, anthocyanin accumulation and F3H expression in grape berries has been little reported. Present experiment was done with sliced grape berry system. The optimum fruit developmental stage, sugar concentration, and incubation time in sugar induction anthocyanin accumulation and F3H expression were determined. Mannose and 2-deoxyglucose, glucose analogs known to be phosphorylated by hexokinase but are poorly metabolized, obviously induced the anthocyanin accumulation and F3H expression, whereas 3-O-methylglucose and 6-deoxyglucose, glucose analogs transported inside the cell but not substrates for hexokinase, did not induce them. Glucosamine and mannoheptulose, the specific inhibitors of hexokinase, blocked the activation induced by sugar on both anthocyanin accumulation and F3H expression.


Anthocyanin Flavanone 3-hydroxylase Sliced grape berry system Hexokinase Sugar signaling 



Chalcone synthase


Day after full bloom


Flavanone 3-hydroxylase


Phenylalanine ammonia lyase


Reverse transcription-polymerase chain reaction



This research was supported by major program of Beijing Municipal Science & Technology Commission (No. D07060500160701).


  1. Ban T, Ishimaru M, Kobayashi S, Shiozaki S, Goto-Yamamoto N, Horiuchi S (2003) Abscisic acid and 2,4-dichlorohenoxyacetic acid affect the expression of anthocyanin biosynthetic pathway genes in ‘Kyoho’ grape berries. J Hortic Sci Biotechnol 78:586–589Google Scholar
  2. Boss PK, Davies C, Robinson SP (1996) Analysis of the expression of anthocyanin pathway genes in developing vitis vinifera 1 cv shiraz grape berries and the implications for pathway regdation. Plant Physiol 111:1059–1066PubMedGoogle Scholar
  3. Chen JY, Wen PF, Kong WF, Pan QH, Zhan JC, Li JM, Wan SB, Huang WD (2006a) Effect of salicylic acid on phenylpropanoids and phenylalanine ammonia-lyase in harvested grape berries. Postharvest Biol Technol 40:64–72. doi: 10.1016/j.postharvbio.2005.12.017 CrossRefGoogle Scholar
  4. Chen Y, Ji FF, Xie H, Liang JS, Zhang JH (2006b) The regulator of G-protein signaling proteins involved in sugar and abscisic acid signaling in Arabidopsis seed germination. Plant Physiol 140:302–310. doi: 10.1104/pp.105.069872 PubMedCrossRefGoogle Scholar
  5. Cho J, Ryoo N, Ko S, Lee SK, Lee J, Jung KH, Lee YH, Bhoo SH, Winderickx J, An G, Hahn TR, Jeon JS (2006) Structure, expression, and functional analysis of the hexokinase gene family in rice (Oryza sativa L.). Planta 224:598–611. doi: 10.1007/s00425-006-0251-y PubMedCrossRefGoogle Scholar
  6. Gazzarrini S, McCourt P (2001) Genetic interactions between ABA, ethylene and sugar signalling pathways. Curr Opin Plant Biol 4:387–391PubMedCrossRefGoogle Scholar
  7. Gonzali S, Loreti E, Solfanelli C, Novi G, Alpi A, Perata P (2006) Identification of sugar-modulated genes and evidence for in vivo sugar sensing in Arabidopsis. J Plant Res 119:115–123. doi: 10.1007/s10265-005-0251-1 PubMedCrossRefGoogle Scholar
  8. Hara M, Oki K, Hoshino K, Kuboi T (2003) Enhancement of anthocyanin biosynthesis by sugar in radish (Raphanus sativus) hypocotyls. Plant Sci 164:259–265. doi: 10.1016/S0168-9452(02)00408-9 CrossRefGoogle Scholar
  9. Holton TA, Cornish EC (1995) Genetics and biochemistry of anthocyanin biosynthesis. Plant Cell 7:1071–1083PubMedCrossRefGoogle Scholar
  10. Isla MI, Vattuone MA, Sampietro AR (1998) Essential group at the active site of Frapaeolum invertase. Phytochemistry 47:1189–1193. doi: 10.1016/S0031-9422(97)00757-7 CrossRefGoogle Scholar
  11. Jang JC, Leon P, Zhou L, Sheen JS (1997) Hexokinase as a sugar sensor in higher plants. Plant Cell 9:5–19PubMedCrossRefGoogle Scholar
  12. Koch K (2004) Sucrose metabolism: regulatory mechanisms and pivotal roles in sugar sensing and plant development. Curr Opin Plant Biol 7:235–246. doi: 10.1016/j.pbi.2004.03.014 PubMedCrossRefGoogle Scholar
  13. Koes R, Quattrocchio R, Mol J (1994) The flavonoid biosynthetic pathway in plants: function and evolution. Bioessays 16:123–132. doi: 10.1002/bies.950160209 CrossRefGoogle Scholar
  14. Laemmli UK (1970) Cleavage of structural protein during the assembly of the head of bacteriophage T4. Nature 227:680–685. doi: 10.1038/227680a0 PubMedCrossRefGoogle Scholar
  15. Loreti E, Povero G, Novi G, Solfanelli C, Alpi A, Perata P (2008) Gibberellins, jasmonate and abscisic acid modulate the sucrose-induced expression of anthocyanin biosynthetic genes in Arabidopsis. New Phytol 4:1–13Google Scholar
  16. Martínez-Noël G, Nagaraj V, Caló G, Wiemken A, Pontis HG (2007) Sucrose regulated expression of a Ca2t-dependent protein kinase (TaCDPK1) gene in excised leaves of wheat. Plant Physiol Biochem 45:410–419. doi: 10.1016/j.plaphy.2007.03.004 PubMedCrossRefGoogle Scholar
  17. Mita S, Murano N, Akaike M, Nakamura K (1997) Mutants of Arabidopsis thaliana with pleiotropic effects on the expression of the gene for beta-amylase and on the accumulation of anthocyanin that are inducible by sugars. Plant J 11:841–851. doi: 10.1046/j.1365-313X.1997.11040841.x PubMedCrossRefGoogle Scholar
  18. Moalem-Beno D, Tamari G, Leitner-Dagan Y, Borochov A, Weiss D (1997) Sugar-dependent gibberellin-induced chalcone synthase gene expression in petunia corollas. Plant Physiol 113:419–424PubMedGoogle Scholar
  19. Moore B, Zhou L, Rolland F, Hall Q, Cheng WH, Liu YX, Hwang I, Jones T, Sheen J (2003) Role of the Arabidopsis glucose sensor HXK1 in nutrient, light, and hormonal signaling. Science 300:332–336. doi: 10.1126/science.1080585 PubMedCrossRefGoogle Scholar
  20. Mori K, Sugaya S, Gemma H (2005) Decreased anthocyanin biosynthesis in grape berries grown under elevated night temperature condition. Sci Hortic 105:319–330. doi: 10.1016/j.scienta.2005.01.032 CrossRefGoogle Scholar
  21. Neta-Sharir I, Shoseyov O, Weiss D (2000) Sugars enhance the expression of gibberellin-induced genes in developing petunia flowers. Physiol Plant 109:196–202. doi: 10.1034/j.1399-3054.2000.100212.x CrossRefGoogle Scholar
  22. Ohto M, Onai K, Furukawa Y, Aoki E, Araki T, Nakamura K (2001) Effects of sugar on vegetative development and floral transition in Arabidopsis. Plant Physiol 127:252–261. doi: 10.1104/pp.127.1.252 PubMedCrossRefGoogle Scholar
  23. Rolland F, Baena-Gonzalez E, Sheen J (2006) Sugar sensing and signaling in plants: conserved and novel mechanisms. Annu Rev Plant Biol 57:675–709. doi: 10.1146/annurev.arplant.57.032905.105441 PubMedCrossRefGoogle Scholar
  24. Sadka A, Dewald DB, May GD, Park WD, Mullet JE (1994) Phosphate modulates transcription of soybean VspB and other sugar inducible genes. Plant Cell 6:737–749PubMedCrossRefGoogle Scholar
  25. Solfanelli C, Poggi A, Loreti E, Alpi A, Perata P (2006) Sucrose-Specific induction of the anthocyanin biosynthetic pathway in Arabidopsis. Plant Physiol 140:637–646. doi: 10.1104/pp.105.072579 PubMedCrossRefGoogle Scholar
  26. Sparvoli F, Martin C, Scienza A, Gavazzi G, Tonelli C (1994) Cloning and molecular analysis of structural genes involved in flavonoid and stilbene biosynthesis in grape (Vitis vinifera L.). Plant Mol Biol 24:743–755. doi: 10.1007/BF00029856 PubMedCrossRefGoogle Scholar
  27. Sun JY, Chen YM, Wang QM, Chen J, Wang XC (2006) Glucose inhibits the expression of triose phosphate/phosphate translocator gene in wheat via hexokinase-dependent mechanism. Int J Biochem Cell Biol 38:1102–1113PubMedCrossRefGoogle Scholar
  28. Teng S, Keurentjes J, Bentsink L, Koornneef M, Smeekens S (2005) Sucrose-specific induction of anthocyanin biosynthesis in Arabidopsis requires the MYB75/PAP1 gene. Plant Physiol 139:1840–1852. doi: 10.1104/pp.105.066688 PubMedCrossRefGoogle Scholar
  29. Tsukaya H, Ohshima T, Naito S, Chino M, Komeda Y (1991) Sugar dependent expression of the CHS-A gene for chalcone synthase from petunia in transgenic Arabidopsis. Plant Physiol 97:1414–1421. doi: 10.1104/pp.97.4.1414 PubMedCrossRefGoogle Scholar
  30. Ubi BE, Honda C, Bessho H, Kondo S, Wada M, Kobayashi S, Moriguchi T (2006) Expression analysis of anthocyanin biosynthetic genes in apple skin: effect of UV-B and temperature. Plant Sci 170:571–578. doi: 10.1016/j.plantsci.2005.10.009 CrossRefGoogle Scholar
  31. Villadsen D, Smith S (2004) Identification of more than 200 glucoseresponsive Arabidopsis genes none of which responds to 3-O-methylglucose or 6-deoxyglucose. Plant Mol Biol 55:467–477. doi: 10.1007/s11103-004-1050-0 PubMedCrossRefGoogle Scholar
  32. Vitrac X, Larronde F, Krisa S, Decendit A, Deffieux G, Mérillon JM (2000) Sugar sensing and Ca2+-calmodulin requirement in Vitis vinifera cells producing anthocyanins. Phytochemistry 53:659–665. doi: 10.1016/S0031-9422(99)00620-2 PubMedCrossRefGoogle Scholar
  33. Weiss D (2000) Regulation of flower pigmentation and growth: multiple signaling pathways control anthocyanin synthesis in expanding petals. Physiol Plant 110:152–157. doi: 10.1034/j.1399-3054.2000.110202.x CrossRefGoogle Scholar
  34. Wen PF, Chen JY, Kong WF, Pan QH, Wan SB, Huang WD (2005) Salicylic acid induced the expression of phenylalanine ammonia-lyase gene in grape berry. Plant Sci 169:928–934. doi: 10.1016/j.plantsci.2005.06.011 CrossRefGoogle Scholar
  35. Xiao W, Sheen J, Jang JC (2000) The role of hexokinase in plant sugar signal transduction and growth and development. Plant Mol Biol 44:451–461. doi: 10.1023/A:1026501430422 PubMedCrossRefGoogle Scholar
  36. Yang ZP, Zhang L, Diao FQ, Huang MJ, Wu NH (2004) Sucrose regulates elongation of carrot somatic embryo radicles as a signal molecule. Plant Mol Biol 54:441–459. doi: 10.1023/B:PLAN.0000036375.40006.d3 PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2009

Authors and Affiliations

  • Yanjun Zheng
    • 1
  • Li Tian
    • 1
  • Hongtao Liu
    • 1
    • 2
  • Qiuhong Pan
    • 1
  • Jicheng Zhan
    • 1
  • Weidong Huang
    • 1
  1. 1.College of Food Science and Nutritional EngineeringChina Agricultural UniversityBeijingChina
  2. 2.Institute of Geographic Sciences and Natural Resources ResearchChinese Academy of SciencesBeijingChina

Personalised recommendations