Advertisement

Plant Growth Regulation

, Volume 58, Issue 3, pp 243–250 | Cite as

Hydrogen sulfide counteracts chlorophyll loss in sweetpotato seedling leaves and alleviates oxidative damage against osmotic stress

  • Hua ZhangEmail author
  • Yong-Kang Ye
  • Song-Hua Wang
  • Jian-Ping Luo
  • Jun Tang
  • Dai-Fu Ma
Original Paper

Abstract

In this paper, effect of NaHS, a hydrogen sulfide (H2S) donor on chlorophyll and antioxidant metabolism in seedling leaves of sweetpotato under osmotic stress was investigated. With the enhancement of osmotic stress, which was mimicked by PEG-6000, chlorophyll in seedling leaves of sweetpotato (Ipomoea batatas) decreased dramatically. At 15% PEG (w/v), chlorophyll concentration reached only 50% compared with that of the controls. The osmotic-induced decrease in chlorophyll concentration could be alleviated by spraying exogenous H2S donor, NaHS in a dose-dependent manner, while little visible symptoms were observed in leaves sprayed with NaHS under control conditions. It was also shown that H2S or HS rather than other sulfur-containing components derived from NaHS contributed to the protective role against chlorophyll degradation during osmotic stress. Further studies showed that NaHS spraying dramatically promoted the activities of superoxide dismutase, catalase, ascorbate peroxidase and decreased that of lipoxygenase and the concentrations of hydrogen peroxide (H2O2) and malondialdehyde. In addition, concentrations of endogenous H2S in NaHS-sprayed seedlings were higher than that in water-spraying control under osmotic stress. These data indicated that H2S plays a protective role in sweetpotato seedlings during osmotic stress.

Keywords

Antioxidant enzymes Chlorophyll Hydrogen sulfide (H2S) Osmotic stress Seedling leaves Sweetpotato (Ipomoea batatas

Abbreviations

APX

Ascorbate peroxidase

CAT

Catalase

CO

Carbon monoxide

H2O2

Hydrogen peroxide

H2S

Hydrogen sulfide

LOX

Lipoxygenase

MDA

Malondialdehyde

NaHS

Sodium hydrosulfide

NO

Nitric oxide

ROS

Reactive oxygen species

SOD

Superoxide dismutase

Notes

Acknowledgments

This work was supported by the Natural Science Foundation of Anhui Province (070411009), the Great Project of Natural Science Foundation from Anhui Provincial Education Department (ZD200910), and the innovation fund to undergraduate students from Hefei University of Technology (XS0637, 08072).

References

  1. Bartosz G (1997) Oxidative stress in plants. Acta Physiol Plant 19:47–64. doi: 10.1007/s11738-997-0022-9 CrossRefGoogle Scholar
  2. Beauchamp RO, Bus JS, Popp JA et al (1984) A critical review of the literature on hydrogen sulfide toxicity. Crit Rev Toxicol 13:25–48. doi: 10.3109/10408448409029321 PubMedCrossRefGoogle Scholar
  3. Bloem E, Riemenschneider A, Volker J et al (2004) Sulphur supply and infection with Pyrenopeziza brassica influence l-cysteine desulfhydrase activity in Brassica napus L. J Exp Bot 55:2305–2312. doi: 10.1093/jxb/erh236 PubMedCrossRefGoogle Scholar
  4. Blokhina O, Virolainen E, Fagerstedt KV (2003) Antioxidants, oxidative damage and oxygen deprivation stress: a review. Ann Bot 91:179–194. doi: 10.1093/aob/mcf118 PubMedCrossRefGoogle Scholar
  5. Bowler C, Fluhr R (2000) The role of calcium and activated oxygens as signals for controlling cross-tolerance. Trends Plant Sci 5:241–246. doi: 10.1016/S1360-1385(00)01628-9 PubMedCrossRefGoogle Scholar
  6. De Kok LJ, Castro A, Durenkamp M et al. (2002) Sulphur in plant physiology. In: Proceedings No. 500. The International Fertiliser Society, York, pp 1–26Google Scholar
  7. Delledonne M (2005) NO news is good news for plants. Curr Opin Plant Biol 8:390–396. doi: 10.1016/j.pbi.2005.05.002 PubMedCrossRefGoogle Scholar
  8. García-Limones C, Hervás A, Navas-Cortés JA et al (2002) Induction of an antioxidant enzyme system and other oxidative stress markers associated with compatible and incompatible interactions between chickpea (Cicer arietinum L.) and Fusarium oxysporum f. sp. ciceris. Physiol Mol Plant Pathol 61:325–337. doi: 10.1006/pmpp.2003.0445 CrossRefGoogle Scholar
  9. Hällgren JE, Fredriksson SÅ (1982) Emission of hydrogen sulfide from sulfate dioxide-fumigated pine trees. Plant Physiol 70:456–459. doi: 10.1104/pp.70.2.456 PubMedCrossRefGoogle Scholar
  10. Han Y, Xuan W, Yu T et al (2007) Exogenous hematin alleviates mercury-induced oxidative damage in the roots of Medicago sativa. J Integr Plant Biol 49:1703–1713. doi: 10.1111/j.1744-7909.2007.00592.x CrossRefGoogle Scholar
  11. Hosoki R, Matsuki N, Kimura H (1997) The possibel role of hydrogen sulfide as an endogenous smooth muscle relaxant in synergy with nitric oxide. Biochem Biophys Res Commun 237:527–531. doi: 10.1006/bbrc.1997.6878 PubMedCrossRefGoogle Scholar
  12. Hu K-D, Hu L-Y, Li Y-H et al (2007) Protective roles of nitric oxide on germination and antioxidant metabolism in wheat seeds under copper stress. Plant Growth Regul 53:173–183. doi: 10.1007/s10725-007-9216-9 CrossRefGoogle Scholar
  13. Huang BK, Xu S, Xuan W et al (2006) Carbon monoxide alleviates salt-induced oxidative damage in wheat seedling leaves. J Integr Plant Biol 48:249–254. doi: 10.1111/j.1744-7909.2006.00220.x CrossRefGoogle Scholar
  14. Jiang MY, Yang WY, Xu J (1994) Active oxygen damage effect of chlorophyll degradation in rice seedlings under osmotic stress. Acta Bot Sin 36:289–295Google Scholar
  15. Knight H, Knight MR (2001) Abiotic stress signaling pathways: specificity and cross-talk. Trends Plant Sci 6:262–267. doi: 10.1016/S1360-1385(01)01946-X PubMedCrossRefGoogle Scholar
  16. Leon S, Touraine B, Briat JF et al (2002) The AtNFS2 gene from Arabidopsis thaliana encodes a NifS-like plastidial cysteine desulphurase. Biochem J 366:557–564. doi: 10.1042/BJ20020322 PubMedCrossRefGoogle Scholar
  17. Li L, Bhatia M, Moore PK (2006) Hydrogen sulphide—a novel mediator of inflammation? Curr Opin Pharmacol 6:125–129. doi: 10.1016/j.coph.2005.10.007 PubMedCrossRefGoogle Scholar
  18. Mehta RA, Fawcett TW, Porath D et al (1992) Oxidative stress causes rapid membrane translocation and in vivo degradation of ribulose-1,5-biphosphate carboxylase/oxygenase. J Biol Chem 267:2810–2816PubMedGoogle Scholar
  19. Mittler R (2002) Oxidative stress, antioxidants and stress tolerance. Trends Plant Sci 7:405–410. doi: 10.1016/S1360-1385(02)02312-9 PubMedCrossRefGoogle Scholar
  20. Mittler R (2006) Abiotic stress, the field environment and stress combination. Trends Plant Sci 11:15–19. doi: 10.1016/j.tplants.2005.11.002 PubMedCrossRefGoogle Scholar
  21. Nield J, Redding K, Hippler M (2004) Remodeling of light-harvesting protein complexes in chlamydomonas in response to environmental changes. Eukaryot Cell 3:1370–1380. doi: 10.1128/EC.3.6.1370-1380.2004 PubMedCrossRefGoogle Scholar
  22. Rausch T, Wachter A (2005) Sulfur metabolism: a versatile platform for launching defence operations. Trends Plant Sci 10:503–509. doi: 10.1016/j.tplants.2005.08.006 PubMedCrossRefGoogle Scholar
  23. Rennenberg H (1983) Role of O-acetylserine in hydrogen sulfide emission from pumpkin leaves in response to sulfate. Plant Physiol 73:560–565. doi: 10.1104/pp.73.3.560 PubMedCrossRefGoogle Scholar
  24. Rennenberg H (1984) The fate excess of sulfur in higher plants. Annu Rev Plant Physiol 35:121–153. doi: 10.1146/annurev.pp.35.060184.001005 CrossRefGoogle Scholar
  25. Rennenberg H, Huber B, Schröder P et al (1990) Emission of volatile sulfur compounds from spruce trees. Plant Physiol 92:560–564. doi: 10.1104/pp.92.3.560 PubMedCrossRefGoogle Scholar
  26. Riemenschneider A, Nikiforova V, Hoefgen R et al (2005a) Impact of elevated H2S on metabolite levels, activity of enzymes and expression of genes involved in cysteine metabolism. Plant Physiol Biochem 43:473–483. doi: 10.1016/j.plaphy.2005.04.001 PubMedCrossRefGoogle Scholar
  27. Riemenschneider A, Wegele R, Schmidt A et al (2005b) Isolation and characterization of a d-cysteine desulfhydrase protein from Arabidopsis thaliana. FEBS J 272:1291–1304. doi: 10.1111/j.1742-4658.2005.04567.x PubMedCrossRefGoogle Scholar
  28. Sa ZS, Huang LQ, Wu GL et al (2007) Carbon monoxide: a novel antioxidant against oxidative stress in wheat seedling leaves. J Integr Plant Biol 49:638–645. doi: 10.1111/j.1744-7909.2007.00461.x CrossRefGoogle Scholar
  29. Sekiya J, Schmidt A, Wilson LG et al (1982a) Emission of hydrogen sulfide by leaf tissue in response to l-cysteine. Plant Physiol 70:430–436. doi: 10.1104/pp.70.2.430 PubMedCrossRefGoogle Scholar
  30. Sekiya J, Wilson LG, Filner P (1982b) Resistance to injury by sulfur dioxide: correlation with its reduction to, and emission of, hydrogen sulfide in cucurbitaceae. Plant Physiol 70:437–441. doi: 10.1104/pp.70.2.437 PubMedCrossRefGoogle Scholar
  31. Smirnoff N (1993) The role of active oxygen in the response of plants to water deficit and desiccation. New Phytol 125:27–58. doi: 10.1111/j.1469-8137.1993.tb03863.x CrossRefGoogle Scholar
  32. Song YG, Liu B, Wang LF et al (2006) Damage to the oxygen-evolving complex by superoxide anion, hydrogen peroxide, and hydroxyl radical in photoinhibition of photosystem II. Photosynth Res 90:67–78. doi: 10.1007/s11120-006-9111-7 PubMedCrossRefGoogle Scholar
  33. Stuiver CEE, De Kok LJ, Kuiper PJC (1992) Freezing tolerance and biochemical changes in wheat shoots as affected by H2S fumigation. Plant Physiol Biochem 30:47–55Google Scholar
  34. Surrey K (1964) Spectrophotometric method for determination of lipoxidase activity. Plant Physiol 39:65–70. doi: 10.1104/pp.39.1.65 PubMedCrossRefGoogle Scholar
  35. Van Breusegem F, Vranová E, Dat JF et al (2001) The role of active oxygen species in plant signal transduction. Plant Sci 161:405–414. doi: 10.1016/S0168-9452(01)00452-6 CrossRefGoogle Scholar
  36. Verslues PE, Ober ES, Sharp RE (1998) Root growth and oxygen relations at low water potentials. Impact of oxygen availability in polyethylene glycol solutions. Plant Physiol 116:1403–1412. doi: 10.1104/pp.116.4.1403 PubMedCrossRefGoogle Scholar
  37. Wang R (2002) Two’s company, there’s a crowd: can H2S be the third endogenous gaseous transmitter? FASEB J 16:1792–1798. doi: 10.1096/fj.02-0211hyp PubMedCrossRefGoogle Scholar
  38. Westerman S, Stulen I, Suter M et al (2001) Atmospheric H2S as sulphur source for Brassica oleracea: consequences for the activity of the enzymes of the assimilatory sulphate reduction pathway. Plant Physiol Biochem 39:425–432. doi: 10.1016/S0981-9428(01)01258-X CrossRefGoogle Scholar
  39. Wilson LG, Bressan RA, Filner P (1978) Light-dependent emission of hydrogen sulfide from plants. Plant Physiol 61:184–189. doi: 10.1104/pp.61.2.184 PubMedCrossRefGoogle Scholar
  40. Winner WE, Smith CL, Koch GW et al (1981) H2S emission rates from plants and patterns of stable sulfur. Nature 289:672–674. doi: 10.1038/289672a0 CrossRefGoogle Scholar
  41. Yang G, Wu L, Jiang B et al (2008) H2S as a physiologic vasorelaxant: hypertension in mice with deletion of cystathionine γ-lyase. Science 322:587–590. doi: 10.1126/science.1162667 PubMedCrossRefGoogle Scholar
  42. Zhang H, Hu LL, Hu KD et al (2008) Hydrogen sulfide promotes wheat seed germination and alleviates oxidative damage against copper stress. J Integr Plant Biol 50:1518–1529. doi: 10.1111/j.1744-7909.2008.00769.x PubMedCrossRefGoogle Scholar
  43. Zhao W, Zhang J, Lu Y et al (2001) The vasorelaxant effect of H2S as a novel endogenous gaseous KATP channel opener. EMBO J 20:6008–6016. doi: 10.1093/emboj/20.21.6008 PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2009

Authors and Affiliations

  • Hua Zhang
    • 1
    Email author
  • Yong-Kang Ye
    • 1
  • Song-Hua Wang
    • 2
  • Jian-Ping Luo
    • 1
  • Jun Tang
    • 3
  • Dai-Fu Ma
    • 3
  1. 1.School of Biotechnology and Food EngineeringHefei University of TechnologyHefeiPeople’s Republic of China
  2. 2.Life Science CollegeAnhui Science and Technology UniversityBengbuChina
  3. 3.Xuzhou Sweetpotato Reseach Center, Chinese Academy of Agricultural SciencesNational Sweetpotato Improvement CenterXuzhouChina

Personalised recommendations