Plant Growth Regulation

, 57:251 | Cite as

Effects of various chemical agents and early ethylene production on floral senescence of Hibiscus syriacus L.

  • Sang-Gyu Seo
  • Seung-Won Kang
  • Ie-Sung Shim
  • Wook KimEmail author
  • Shinsuke Fujihara
Original Paper


To understand the factors that induce floral senescence in Hibiscus syriacus L., we have investigated the effects of various chemical agents on flower senescence at two different flowering stages, before and after full bloom, as well as the relationship between flower longevity and endogenous ethylene production before full bloom. Treatments with ethylene, 1-aminocyclopropane-1-carboxylic acid (ACC), and ethephon enhanced floral senescence, while aminoethoxyvinylglycine (AVG) promoted flower longevity regardless of treatment timing. Although ethanol slightly extended flower longevity, abscisic acid (ABA), nitric oxide, boric acid and sucrose, which have been reported to affect flower longevity or senescence, had no effect on H. syriacus floral senescence. The polyamine spermine (SPM), methylglyoxal-bis(guanylhydrazone) (MGBG), an inhibitor of SPM biosynthesis, and cycloheximide (CHI) accelerated flower senescence when applied before full bloom, but had no effect when applied after full bloom. SPM, MGBG and CHI treatments resulted in enhanced ethylene production during flower opening, and the promotion of flower senescence is mediated by ethylene production prior to full bloom. Furthermore, endogenous ethylene, spontaneously produced before blooming, was closely associated with floral senescence. These results suggest that ethylene production during flower opening plays a key role in determining the timing of Hibiscus flower senescence.


Aminoethoxyvinylglycine Cycloheximide Ethylene Flower longevity Hibiscus syriacus L. Methylglyoxal-bis(guanylhydrazone) Spermine 


  1. Borochov A, Woodson WR (1989) Physiology and biochemistry of flower petal senescence. Hortic Rev (Am Soc Hortic Sci) 11:15–43Google Scholar
  2. Botha ML, Whitehead CS (1992) The effect of polyamines on ethylene synthesis during normal and pollination-induced senescence of Petunia hybrid L. flowers. Planta 188:478–483. doi: 10.1007/BF00197038 CrossRefGoogle Scholar
  3. Bouchereau A, Aziz A, Larher F, Martin-Tanguy J (1999) Polyamines and environmental challenges: recent developments. Plant Sci 140:103–125. doi: 10.1016/S0168-9452(98)00218-0 CrossRefGoogle Scholar
  4. Chae Y, Lee Y, Son KC (1995) Changes in ethylene production, polyamine levels and activities of SAM decarboxylase, ACC synthase and EFE during flower senescence of Hibiscus syriacus L. cv. Yeonggwang. J Korean Soc Hortic Sci 36:113–120Google Scholar
  5. Downs CG, Lovell PH (1986) The effect of spermidine and putresine on the senescence of cut carnations. Physiol Plant 66:679–684. doi: 10.1111/j.1399-3054.1986.tb05599.x CrossRefGoogle Scholar
  6. Drory A, Beja-Tal S, Borochov A, Gindin E, Mayak S (1995) Transient water stress in cut carnation flowers: effects of cycloheximide. Sci Hortic (Amsterdam) 64:167–175. doi: 10.1016/0304-4238(95)00840-3 CrossRefGoogle Scholar
  7. Ichimura K, Shimamura M, Hisamatsu T (1998) Role of ethylene in senescence of cut Eustoma flowers. Postharvest Biol Technol 14:193–198. doi: 10.1016/S0925-5214(98)00039-8 CrossRefGoogle Scholar
  8. Jiang WB, Mayak S, Halevy AH (1994) The mechanism involved in ethylene-enhanced ethylene synthesis in carnations. Plant Growth Regul 14:133–138. doi: 10.1007/BF00025214 CrossRefGoogle Scholar
  9. Kuiper D, Ribot S, Van Reenen HS, Marissen N (1995) The effect of sucrose on the flower bud opening of Madelon cut roses. Sci Hortic (Amsterdam) 60:325–336. doi: 10.1016/0304-4238(94)00706-L CrossRefGoogle Scholar
  10. Kushad MM, Dumbroff EB (1991) Metabolic and physiological relationships between the polyamine and ethylene biosynthetic pathways. In: Slocum RD, Flores HE (eds) Biochemistry and physiology of polyamines in plants. CRC Press, Boca Raton, FL, pp 77–92Google Scholar
  11. Lay-Yee M, Stead AD, Reid MS (1992) Flower senescence in daylily (Hemerocallis). Physiol Plant 86:308–314. doi: 10.1034/j.1399-3054.1992.860218.x CrossRefGoogle Scholar
  12. Lee MM, Lee SH, Park KY (1997) Effects of spermine on ethylene biosynthesis in cut carnation (Dianthus caryophyllus L.) flowers during senescence. J Plant Physiol 151:68–73Google Scholar
  13. Leshem YY, Wills RBH, Ku VVV (1998) Evidence for the function of the free radical gas-nitric oxide (NO)-as an endogenous maturation and senescence regulating factor in higher plants. Plant Physiol Biochem 36:825–833. doi: 10.1016/S0981-9428(99)80020-5 CrossRefGoogle Scholar
  14. Macnish AJ, Irving DE, Joyce DC, Vithanage V, Wearing AH, Lisle AT (2004) Variation in ethylene-induced postharvest flower abscission among Chamaleucium Desf. (Myrtaceae) genotypes. Sci Hortic (Amsterdam) 102:415–432. doi: 10.1016/j.scienta.2004.05.002 CrossRefGoogle Scholar
  15. Onoue T, Mikami M, Yoshioka T, Hashiba T, Satoh S (2000) Characteristics of the inhibitory action of 1, 1-dimethyl-4-(phenylsulfonyl)semicarbazide (DPSS) on ethylene production in carnation (Dianthus caryophyllus L.) flowers. Plant Growth Regul 30:201–207. doi: 10.1023/A:1006324715438 CrossRefGoogle Scholar
  16. Onozaki T, Ikeda H, Shibata M (2004) Video evaluation of ethylene sensitivity after anthesis in carnation (Dianthus caryophyllus L.) flowers. Sci Hortic (Amsterdam) 99:187–197. doi: 10.1016/S0304-4238(03)00094-3 CrossRefGoogle Scholar
  17. Overbeek J, Woltering E (1990) Synergistic effect of 1-aminocyclopropane-1-carboxylic acid and ethylene during senescence of isolated carnation petals. Physiol Plant 79:368–376. doi: 10.1111/j.1399-3054.1990.tb06755.x CrossRefGoogle Scholar
  18. Panavas T, LeVangie R, Mistler J, Reid PD, Rubinstein B (2000) Activities of nucleases in senescing daylily petals. Plant Physiol Biochem 38:837–843. doi: 10.1016/S0981-9428(00)01192-X CrossRefGoogle Scholar
  19. Pandey S, Ranade SA, Nagar PK, Kumar N (2000) Role of polyamines and ethylene as modulators of plant senescence. J Biosci 25:291–299. doi: 10.1007/BF02703938 PubMedCrossRefGoogle Scholar
  20. Petridou M, Voyiatzi C, Voyiatzis D (2001) Methanol, ethanol and other compounds retard leaf senescence and improve the vase life and quality of cut chrysanthemum flowers. Postharvest Biol Technol 23:79–83. doi: 10.1016/S0925-5214(01)00102-8 CrossRefGoogle Scholar
  21. Podd LA, van Staden J (2002) Physiological response and extension of vase life of cut carnation flowers treated with ethanol and acetylaldehyde. I. Chlorophyll content and carbohydrate status. Plant Growth Regul 38:99–105. doi: 10.1023/A:1021267712167 CrossRefGoogle Scholar
  22. Pun UK, Rowarth JS, Barnes MF, Heyes JA (2001) The role of ethanol or acetaldehyde in the biosynthesis of ethylene in carnation (Dianthus caryophyllus L.) cv. Yellow Candy. Postharvest Biol Technol 21:235–239. doi: 10.1016/S0925-5214(00)00111-3 CrossRefGoogle Scholar
  23. Ronen M, Mayak S (1981) Interrelationship between abscisic acid and ethylene in the control of senescence processes in carnation flowers. J Exp Bot 32:759–765. doi: 10.1093/jxb/32.4.759 CrossRefGoogle Scholar
  24. Seo SG, Kobayashi K, Fujihara S (2007a) The possible relationship between ethylene and polyamine metabolism during the flower opening and senescence, and their effect on flower longevity in Hibiscus syriacus L. Hortic Res Jpn 6:471–477Google Scholar
  25. Seo SG, Shim IS, Usui K, Fujihara S (2007b) Analysis of polyamines, 1-aminocyclopropane-1-carboxylic acid and their conjugated forms in floral organs of Hibiscus syriacus L. J Jpn Soc Hortic Sci 76:149–156CrossRefGoogle Scholar
  26. Serrano M, Amorós A, Pretel MT, Martinez-Madrid MC, Romojaro F (2001) Preservative solutions containing boric acid delay senescence of carnation flowers. Postharvest Biol Technol 23:133–142. doi: 10.1016/S0925-5214(01)00108-9 CrossRefGoogle Scholar
  27. Shibuya K, Yoshioka T, Hashiba T, Satoh S (2000) Role of the gynoecium in natural senescence of carnation (Dianthus caryophyllus L.) flowers. J Exp Bot 51:2067–2073. doi: 10.1093/jexbot/51.353.2067 PubMedCrossRefGoogle Scholar
  28. Shvarts M, Weiss D, Borochov A (1997) Temperature effects on growth, pigmentation and post-harvest longevity of petunia flowers. Sci Hortic (Amsterdam) 69:217–227. doi: 10.1016/S0304-4238(97)00015-0 CrossRefGoogle Scholar
  29. Van Altvorst AC, Bovy AG (1995) The role of ethylene in the senescence of carnation flowers: a review. Plant Growth Regul 16:43–53. doi: 10.1007/BF00040506 CrossRefGoogle Scholar
  30. Vardi Y, Mayak S (1989) Involvement of abscisic acid during water stress and recovery in petunia flowers. Acta Hortic 261:107–112Google Scholar
  31. Verlinden S, Garcia JJV (2004) Sucrose loading decreases ethylene responsiveness in carnation (Dianthus caryophyllus cv. White Sim) petals. Postharvest Biol Technol 31:305–312. doi: 10.1016/j.postharvbio.2003.09.010 CrossRefGoogle Scholar
  32. Walden R, Cordeiro A, Tiburcio AF (1997) Polyamines: small molecules triggering pathways in plant growth and development. Plant Physiol 113:1009–1013. doi: 10.1104/pp.113.4.1009 PubMedCrossRefGoogle Scholar
  33. Wang CY, Baker JE (1980) Extending vase life of carnations with aminooxyacetic acid, polyamines, EDU, and CCCP. Hort Sci 15:805–806Google Scholar
  34. Woltering EJ, Van Doorn WG (1988) Role of ethylene and senescence of petals: morphological and taxonomical relationships. J Exp Bot 39:1605–1616. doi: 10.1093/jxb/39.11.1605 CrossRefGoogle Scholar
  35. Woodson WR, Hanchey SH, Chisholm DN (1985) Role of ethylene in the senescence of isolated hibiscus petals. Plant Physiol 79:679–683PubMedCrossRefGoogle Scholar
  36. Wulster C, Sacalis J, Janes HW (1982) The effect of inhibitors of protein synthesis on ethylene-induced senescence in isolated carnation petals. J Am Soc Hortic Sci 107:112–115Google Scholar

Copyright information

© Springer Science+Business Media B.V. 2008

Authors and Affiliations

  • Sang-Gyu Seo
    • 1
  • Seung-Won Kang
    • 2
  • Ie-Sung Shim
    • 3
  • Wook Kim
    • 4
    Email author
  • Shinsuke Fujihara
    • 5
  1. 1.BK21, School of Life Sciences & BiotechnologyKorea UniversitySeoulSouth Korea
  2. 2.Gene Research CenterUniversity of TsukubaTsukubaJapan
  3. 3.Department of Environmental HorticultureUniversity of SeoulSeoulSouth Korea
  4. 4.Division of BiotechnologyKorea UniversitySeoulSouth Korea
  5. 5.Research Team for Soil and Plant AnalysisNational Agricultural Research CenterTsukubaJapan

Personalised recommendations