Plant Growth Regulation

, 57:223 | Cite as

Effect of 1-methylcyclopropene on expression of genes for ethylene biosynthesis enzymes and ethylene receptors in post-harvest broccoli

  • Gang Ma
  • Ran Wang
  • Cheng-Rong Wang
  • Masaya Kato
  • Kazuki Yamawaki
  • Fei-fei Qin
  • Hui-Lian Xu
Original Paper


The effects of 1-methylcyclopropene (1-MCP), an ethylene action inhibitor, on the senescence of broccoli (Brassica oleracea, L. var. italica) after harvest were studied, and its possible molecular mechanism was discussed. The results showed that 1-MCP treatment delayed the yellowing of broccoli florets, inhibited the activities of 1-aminocyclopropane-1-carboxylate acid (ACC) oxidase (ACO), and delayed the peaks in the ACC synthase (ACS) activity and ACC concentration. In addition, exogenous ethylene treatment did not accelerate yellowing in the florets pretreated with 1-MCP. The gene expression pattern of enzymes involved in ethylene biosynthesis and ethylene receptors in broccoli florets after harvest was investigated. 1-MCP treatment significantly decreased the expression of BO-ACS1, BO-ACS2, BO-ACO1, BO-ERS, BO-ETR1 and BO-ETR2. 1-MCP delayed the senescing process of broccoli by inhibiting the activities of enzymes involved in ethylene biosynthesis and gene expression of these enzymes and of ethylene receptors at the transcript level.


Broccoli 1-Methylcyclopropene (1-MCP) Ethylene Yellowing Real-time PCR 





1-Aminocyclopropane-1-carboxylate acid


ACC oxidase


ACC synthase


Controlled atmosphere


Modified atmosphere





This work was supported by the National Natural Science Foundation of China (No. 30370976), the Scientific Research Foundation for the Returned Overseas Chinese Scholars, State Education Ministry, the Natural Science Foundation of Shandong Province, People’s Republic of China (No. Y2002D04), and the Natural Science Foundation of Qingdao, People’s Republic of China (No. 06-2-2-15-jch).


  1. Able AJ, Wong LS, Prasad A, O’Hare TJ (2002) 1-MCP is more effective on a floral brassica (Brassica oleracea var. italica L.) than a leafy brassica (Brassica rapa var. chinensis). Postharvest Biol Technol 26:147–155. doi:10.1016/S0925-5214(02)00011-X CrossRefGoogle Scholar
  2. Blankenship SM, Dole JM (2003) 1-Methylcyclopropene: a review. Postharvest Biol Technol 28:1–25. doi:10.1016/S0925-5214(02)00246-6 CrossRefGoogle Scholar
  3. Chang C, Stadler R (2001) Ethylene hormone receptor action in Arabidopsis. Bioessays 23:619–627. doi:10.1002/bies.1087 PubMedCrossRefGoogle Scholar
  4. Chen HH, Charng YY, Shang FY, Shaw JF (1998a) Molecular cloning and sequencing of a broccoli cDNA (Accession No.AF047476) encoding an ETR-type ethylene receptor (PGR98-088). Plant Physiol 117:717. doi:10.1104/pp.117.2.717 CrossRefGoogle Scholar
  5. Chen HH, Charng YY, Yang SF, Shaw JF (1998b) Isolation and characterization of a broccoli cDNA (Accession No.AF047477) encoding an ERS-type ethylene receptor (PGR98-123). Plant Physiol 117:1126Google Scholar
  6. Downs CG, Somerfield SD, Davey MC (1997) Cytokinin treatment delays senescence but not sucrose loss in harvested broccoli. Postharvest Biol Technol 11:93–100. doi:10.1016/S0925-5214(97)01419-1 CrossRefGoogle Scholar
  7. Eggermont K, Goderis IJ, Broekaert WF (1996) High-throughput RNA extraction from plant samples based on homogenisation by reciprocal shaking in the presence of a mixture of sand and glass beads. Plant Mol Biol Rep 14:273–279. doi:10.1007/BF02671663 CrossRefGoogle Scholar
  8. Fan XT, Mattheis JP (1999) Impact of 1-methylcyclopropene and methyl jasmonate on apple volatile production. J Agric Food Chem 47:2847–2853. doi:10.1021/jf990221s PubMedCrossRefGoogle Scholar
  9. Fan XT, Mattheis JP (2000) Yellowing of broccoli in storage is reduced by 1-methylcyclopropene. HortSci 35:885–887Google Scholar
  10. Feng X, Apelbaum A, Sisler EC, Goren R (2000) Control of ethylene responses in avocado fruit with 1-methylcyclopropene. Postharvest Biol Technol 20:143–150. doi:10.1016/S0925-5214(00)00126-5 CrossRefGoogle Scholar
  11. Fluhr R, Mattoo AK (1996) Ethylene: biosynthesis and perception. CRC Crit Rev Plant Sci 15:479–523. doi:10.1080/713608139 Google Scholar
  12. Funamoto Y, Yamauchi N, Shigenaga T, Shigyo M (2002) Effects of heat treatment on chlorophyll degrading enzymes in stored broccoli (Brassica oleracea L.). Postharvest Biol Technol 24:163–170. doi:10.1016/S0925-5214(01)00135-1 CrossRefGoogle Scholar
  13. Gillies SL, Toivonen PMA (1995) Cooling method influences the postharvest quality of broccoli. HortSci 30:313–315Google Scholar
  14. Giovannoni J (2001) Molecular biology of fruit maturation and ripening. Annu Rev Plant Physiol Plant Mol Biol 52:725–749. doi:10.1146/annurev.arplant.52.1.725 PubMedCrossRefGoogle Scholar
  15. Golding JB, Shearer D, Wyllie SG, McGlasson WB (1998) Application of 1-MCP and propylene to identify ethylene-dependent ripening process in mature banana fruit. Postharvest Biol Technol 14:87–98. doi:10.1016/S0925-5214(98)00032-5 CrossRefGoogle Scholar
  16. Hansen M, Sorensen EH, Cantwell M (2001) Changes in acetaldehyde, ethanol and amino acid concentrations in broccoli florets during air and controlled atmosphere storage. Postharvest Biol Technol 22:227–237. doi:10.1016/S0925-5214(01)00093-X CrossRefGoogle Scholar
  17. Hoeberichts FA, Van der Plas LHW, Woltering EJ (2002) Ethylene perception is required for the expression of tomato ripening-related genes and associated physiological changes even at advanced stages of ripening. Postharvest Biol Technol 26:125–133. doi:10.1016/S0925-5214(02)00012-1 CrossRefGoogle Scholar
  18. Hua J, Meyerowitz E (1998) Ethylene responses are negatively regulated by a receptor gene family in Arabidopsis thaliana. Cell 94:261–271. doi:10.1016/S0092-8674(00)81425-7 PubMedCrossRefGoogle Scholar
  19. Jiang Y, Joyce DC, MaCnish AJ (1999) Extension of the shelf life of banana fruit by 1-methylcyclopropene in combination with polyethylene bags. Postharvest Biol Technol 16:187–193. doi:10.1016/S0925-5214(99)00009-5 CrossRefGoogle Scholar
  20. Kato M, Kamo T, Wang R, Nishikawa F, Hyodo H, Ikoma Y, Sugiura M, Yano M (2002) Wound-induced ethylene synthesis in stem tissue of harvested broccoli and its effect on senescence and ethylene synthesis in broccoli florets. Postharvest Biol Technol 24:69–78. doi:10.1016/S0925-5214(01)00111-9 CrossRefGoogle Scholar
  21. Kende H (1993) Ethylene biosynthesis. Annu Rev Plant Physiol Plant Mol Biol 44:283–307. doi:10.1146/annurev.pp.44.060193.001435 CrossRefGoogle Scholar
  22. King GA, Morris SC (1994) Physiological changes of broccoli during early postharvest senescence and through the preharverst/postharvest continuum. J Am Soc Hortic Sci 119:270–275Google Scholar
  23. Ku VVV, Wills RBH (1999) Effect of 1-methylcyclopropene on the storage life of broccoli. Postharvest Biol Technol 17:127–132. doi:10.1016/S0925-5214(99)00042-3 CrossRefGoogle Scholar
  24. Lashbrook CC, Tieman DM, Klee HJ (1998) Differential regulation of the tomato ETR gene family throughout plant development. Plant J 15:243–252. doi:10.1046/j.1365-313X.1998.00202.x PubMedCrossRefGoogle Scholar
  25. Lelièvere JM, Latchè A, Jones B, Bouzayen M, Pech JC (1997) Ethylene and fruit ripening. Physiol Plant 100:727–739Google Scholar
  26. Lizada MCC, Yang SF (1979) A simple and sensitive assay for 1-aminocyclopropane-1-carboxylic acid. Anal Biochem 100:140–145. doi:10.1016/0003-2697(79)90123-4 PubMedCrossRefGoogle Scholar
  27. Luo ZS (2007) Effect of 1-methylcyclopropene on ripening of postharvest persimmon (Diospyros kaki L.) fruit. Food Sci Technol 40:285–291Google Scholar
  28. Makhlouf J, Willemot C, Arul J, Castaigne F, Emond JP (1989) Regulation of ethylene biosynthesis in broccoli flower buds in controlled atmospheres. J Am Soc Hortic Sci 114:955–958Google Scholar
  29. Pathak N, Asif MH, Dhawan P, Srivastava M, Nath P (2003) Expression and activities of ethylene biosynthesis enzymes during ripening of banana fruits and effect of 1-MCP treatment. Plant Growth Regul 40:11–19. doi:10.1023/A:1023040812205 CrossRefGoogle Scholar
  30. Pogson BJ, Downs CG, Davies KM (1995) Differential expression of two 1-aminocyclopropane-1-carboxylic acid oxidase genes in broccoli after harvest. Plant Physiol 108:651–657. doi:10.1104/pp.108.2.651 PubMedCrossRefGoogle Scholar
  31. Rushing JW (1990) Cytokinins affect respiration, ethylene production, and chlorophyll retention of packaged broccoli florets. HortSci 25:88–90Google Scholar
  32. Sato-Nara K, Yuhashi KI, Higashi K, Hosoya K, Kubota M, Ezura H (1999) Stage- and tissue-specific expression of ethylene receptor homolog genes during fruit development in muskmelon. Plant Physiol 120:321–330. doi:10.1104/pp.120.1.321 PubMedCrossRefGoogle Scholar
  33. Sisler EC, Serek M (1997) Inhibitors of ethylene responses in plants at the receptor level: recent developments. Physiol Plant 100:577–582. doi:10.1111/j.1399-3054.1997.tb03063.x CrossRefGoogle Scholar
  34. Suzuki Y, Uji T, Terai H (2004) Inhibiton of senescence in broccoli florets with ethanol vapor from alcohol powder. Postharvest Biol Technol 31:177–182. doi:10.1016/j.postharvbio.2003.08.002 CrossRefGoogle Scholar
  35. Suzuki Y, Asoda T, Matsumoto Y, Terai H, Kato M (2005) Suppression of the expression of genes encoding ethylene biosynthetic enzymes in harvested broccoli with high temperature treatment. Postharvest Biol Technol 36:265–271Google Scholar
  36. Taiz L, Zeiger E (1998) Plant physiology, 2nd edn. Sinauer Associates, Sunderland, pp 667–668. ISBN 0-87893-831-1Google Scholar
  37. Terai H, Kanou M, Mizuno M, Tsuchida H (1999) Inhibition of yellowing and ethylene production in broccoli florets following high temperature treatment with hot air. Food Preserv Sci 25:221–226Google Scholar
  38. Tian MS, Downs CG, Lill RE, King GA (1994) A role for ethylene in the yellowing of broccoli after harvest. J Am Soc Hortic Sci 119:276–281Google Scholar
  39. Tian MS, Woolf AB, Bowen JH, Ferguson IB (1996) Changes in color and chlorophyll fluorescence of broccoli florets following hot water treatment. J Am Soc Hortic Sci 121:310–313Google Scholar
  40. Tieman DM, Taylor MG, Ciardi JA, Klee HJ (2000) The tomato ethylene receptors NR and LE-ETR4 are negative regulators of ethylene response and exhibit functional compensation within a multigene family. Proc Natl Acad Sci USA 97:5663–5668. doi:10.1073/pnas.090550597 PubMedCrossRefGoogle Scholar
  41. Toivonen PMA (1997) The effects of storage temperature, storage duration, hydro-cooling, and micro-perforated wrap on shelf life of broccoli (Brassica oleracea L., Italica group). Postharvest Biol Technol 10:59–65. doi:10.1016/S0925-5214(97)87275-4 CrossRefGoogle Scholar
  42. Toivonen PMA, DeEll JR (2001) Chlorophyll fluorescence, fermentation product accumulation, and quality of stored broccoli in modified atmosphere packages and subsequent air storage. Postharvest Biol Technol 23:61–69. doi:10.1016/S0925-5214(01)00086-2 CrossRefGoogle Scholar
  43. Trinchero GD, Sozzi GO, Covatta F, Fraschina AA (2004) Inhibition of ethylene action by 1-methylcyclopropene extends postharvest life of “Bartlett” pears. Postharvest Biol Technol 32:193–204. doi:10.1016/j.postharvbio.2003.11.009 CrossRefGoogle Scholar
  44. Valero D, Martinez-Romero D, Valverde JM, Guillen F, Serrano M (2003) Quality improvement and extension of shelf life by 1-methylcyclopropene in plum as affected by ripening stage at harvest. Innov Food Sci Emerg Technol 4:339–348. doi:10.1016/S1466-8564(03)00038-9 CrossRefGoogle Scholar
  45. Voesenek LACJ, Vriezen WH, Smekens MJE, Huitink FHM, Bogemann GM, Blom CWPM (1997) Ethylene sensitivity and response sensor expression in petioles of Rumex species at low O2 and high CO2 concentrations. Plant Physiol 114:1501–1509PubMedGoogle Scholar
  46. Wang CY (1977) Effect of aminoethyoxy analog of rhizobitoxine and sodium benzoate on senescence of broccoli. HortSci 12:54–56Google Scholar
  47. Wang R, Kato M, Kamo T, Nishikawa F, Hyodo H, Ikoma Y, Sugiura M, Yano M (2002) Cloning and expression analysis of putative ethylene receptor genes BO-ETR1, BO-ETR2 and BO-ERS in harvested broccoli. J Jpn Soc Hortic Sci 71:252–254CrossRefGoogle Scholar
  48. Yang SF, Hoffmann NE (1984) Ethylene biosynthesis and its regulation in higher plants. Annu Rev Plant Physiol 35:155–189. doi:10.1146/annurev.pp.35.060184.001103 CrossRefGoogle Scholar
  49. Yang CY, Chu FH, Wang YT, Chen YT, Yang SF, Shaw JF (2003) Novel broccoli 1-aminocyclopropane-1-carboxylate oxidase gene (Bo-ACO3) associated with the late stage of postharvest floret senescence. J Agric Food Chem 51:2569–2575. doi:10.1021/jf034007m PubMedCrossRefGoogle Scholar
  50. Zarembinski TI, Theologis A (1994) Ethylene biosynthesis and action: a case of conservation. Plant Mol Biol 26:1579–1597. doi:10.1007/BF00016491 PubMedCrossRefGoogle Scholar
  51. Zhang MJ, Jiang YM, Jiang WB, Liu XJ (2006) Regulation of ethylene synthesis of harvested banana fruit by 1-methylecyclopropene. Food Technol Biotechnol 44:111–115Google Scholar
  52. Zhuang H, Barth MM, Hildebrand DF (1994) Packaging influenced total chlorophyll, soluble protein, fatty acid composition and lipoxygenase activity in broccoli florets. J Food Sci 59:1171–1174. doi:10.1111/j.1365-2621.1994.tb14669.x CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2008

Authors and Affiliations

  • Gang Ma
    • 1
    • 2
  • Ran Wang
    • 1
  • Cheng-Rong Wang
    • 1
  • Masaya Kato
    • 3
  • Kazuki Yamawaki
    • 3
  • Fei-fei Qin
    • 1
  • Hui-Lian Xu
    • 4
  1. 1.College of HorticultureQingdao Agricultural UniversityQingdaoPeople’s Republic of China
  2. 2.The United Graduate School of Agricultural ScienceGifu University (Shizuoka University)GifuJapan
  3. 3.Department of Biological and Environmental Sciences, Faculty of AgricultureShizuoka UniversityShizuokaJapan
  4. 4.International Nature Farming Research CenterNaganoJapan

Personalised recommendations