Plant Growth Regulation

, Volume 56, Issue 3, pp 245–256 | Cite as

QTLs linked to leaf epicuticular wax, physio-morphological and plant production traits under drought stress in rice (Oryza sativa L.)

  • S. Srinivasan
  • S. Michael Gomez
  • S. Satheesh Kumar
  • S. K. Ganesh
  • K. R. Biji
  • A. Senthil
  • R. Chandra Babu
Original Paper

Abstract

Drought stress is the major constraint to rice (Oryza sativa L.) production and yield stability in rainfed ecosystems. Identifying genomic regions contributing to drought resistance will help to develop rice cultivars suitable for rainfed regions through marker-assisted breeding. Quantitative trait loci (QTLs) linked to leaf epicuticular wax, physio-morphological and plant production traits under water stress and irrigated conditions were mapped in a doubled haploid (DH) line population from the cross CT9993-5-10-1-M/IR62266-42-6-2. The DH lines were subjected to water stress during anthesis. The DH lines showed significant variation for epicuticular wax (EW), physio-morphological and plant production traits under stress and irrigated conditions. A total of 19 QTLs were identified for the various traits under drought stress and irrigated conditions in the field, which individually explained 9.6%–65.6% of the phenotypic variation. A region EM15_10-ME8_4-R1394A-G2132 on chromosome 8 was identified for leaf EW and rate of water loss i.e., time taken to reach 70% RWC from excised leaves in rice lines subjected to drought stress. A large effect QTL (65.6%) was detected on chromosome 2 for harvest index under stress. QTLs identified for EW, rate of water loss from excised leaves and harvest index under stress in this study co-located with QTLs linked to shoot and root-related drought resistance traits in these rice lines and might be useful for rainfed rice improvement.

Keywords

Doubled haploid lines Drought resistance Epicuticular wax Oryza sativa Quantitative trait loci 

Abbreviations

DAS

Days after sowing

DH

Doubled haploid

EW

Epicuticular wax

MAS

Marker assisted selection

OA

Osmotic adjustment

QTLs

Quantitative trait loci

RI

Recombinant inbred

RWC

Relative water content

Notes

Acknowledgement

The research was supported by the Rockefeller Foundation, USA.

References

  1. Babu RC, Shashidhar HE, Lilley JM, Thanh ND, Ray JD, Sadasivam S et al (2001) Variation in root penetration ability, osmotic adjustment and dehydration tolerance among accessions of rice adapted to rainfed lowland and upland ecosystems. Plant Breed 120:233–238. doi: 10.1046/j.1439-0523.2001.00578.x CrossRefGoogle Scholar
  2. Babu RC, Nguyen BD, Chamarerk V, Shanmugasundaram P, Chezhian P, Jeyaprakash P et al (2003a) Genetic analysis of drought resistance in rice by molecular markers: association between secondary traits and field performance. Crop Sci 43:1457–1469Google Scholar
  3. Babu RC, Pathan MS, Shanmugasundaram P (2003b) Improving water productivity in cereal crops under rainfed ecosystem: progress in molecular genetics and genetic engineering approaches. In: Transitions in agriculture for enhancing water productivity. 23–25, September, Agricultural College and Research Institute, Killikulam, Tamil Nadu, IndiaGoogle Scholar
  4. Barrs HD, Weatherley PE (1962) A re-examination of the relative turgidity technique for estimating water deficits in leaves. Aust J Biol Sci 15:413–428Google Scholar
  5. Bernier J, Kumar A, Venuprasad R, Spaner D, Atlin GN (2007) A large-effect QTL for grain yield under reproductive-stage drought stress in upland rice. Crop Sci 47:505–516Google Scholar
  6. Bernier J, Atlin GN, Serraj R, Kumar A, Spaner D (2008) Breeding upland rice for drought resistance. J Sci Food Agric 88:927–939. doi: 10.1002/jsfa.3153 CrossRefGoogle Scholar
  7. Bianchi G, Lupotto E, Russo S (1979) Composition of epicuticular wax of rice, Oryza sativa. Experientia 35:1417. doi: 10.1007/BF01962755 CrossRefGoogle Scholar
  8. Blum A (1988) Plant breeding for stress environments. CRC Press, Boca Daton, FLGoogle Scholar
  9. Blum A (1975) Effect of Bm gene on epicuticular wax and the water relations of Sorghum bicolor (L.). Moench Isr J Bot 24:50–51Google Scholar
  10. Cattivelli L, Rizza F, Badeck FW, Mazzucotelli E, Mastrangelo AM, Francia E, Mare C, Tondelli A, Stanca AM (2008) Drought tolerance improvement in crop plants: an integrated view from breeding to genomics. Field Crops Res 105(1):1–14. doi: 10.1016/j.fcr.2007.07.004 CrossRefGoogle Scholar
  11. Champoux MC, Wang G, Sarkarang S, Mackill DJ, O’Toole JC, Huang N et al (1995) Locating genes associated with root morphology and drought avoidance in rice via linkage to molecular markers. Theor Appl Genet 90:961–981. doi: 10.1007/BF00222910 CrossRefGoogle Scholar
  12. Cho YG, McCouch SR, Kuiper M, Kang M, Pot J, Groenen JTM et al (1998) Integrated map of AFLP, SSLP and RFLP markers using a recombinant inbred population of rice (Oryza sativa L.). Theor Appl Genet 97:370–380. doi: 10.1007/s001220050907 CrossRefGoogle Scholar
  13. Dey MM, Upadhaya HK (1996) Yield loss due to drought, cold and submergence in Asia. In: Evenson RE, Herdt RW, Hossain M (eds) Rice research in Asia progress and priorities. Oxford University Press, Cary, NC, pp 231–242Google Scholar
  14. Ebercon A, Blum A, Jordan WR (1977) A rapid colorimetric method for epicuticular wax content of sorghum leaves. Crop Sci 17:179–180Google Scholar
  15. FAO (Food and Agricultural Organization) (2006) http://www.fao.org
  16. Fukai S, Cooper M (1995) Development of drought-resistant cultivars using physio-morphological traits in rice. Field Crops Res 40:67–86. doi: 10.1016/0378-4290(94)00096-U CrossRefGoogle Scholar
  17. Garrity DP, O’Toole JC (1995) Selection for reproductive stage drought avoidance in rice using infrared thermometry. Agron J 87:773–779Google Scholar
  18. Haque MM, Mackill DJ, Ingram KT (1992) Inheritance of leaf epicuticular wax content in rice. Crop Sci 32:865–868Google Scholar
  19. Harushima Y, Yano M, Shomura A, Sato M, Shimano T, Kuboki Y et al (1998) A high-density rice genetic linkage map with 2, 275 markers using a single F2 population. Genetics 148:479–494PubMedGoogle Scholar
  20. IRRI (International Rice Research Institute) (1996) International network for genetic evaluation of rice: standard evaluation system for rice. International Rice research Institute, Los Banos, PhilippinesGoogle Scholar
  21. IRRI (2004) http://www.irri.org
  22. Jefferson PG, Johanson DA, Runbaugh MD, Asay KH (1989) Water stress and genotypic effects on epicuticular wax production of alfalfa and crested wheat grass in relation to yield and excised leaf water loss rate. Can J Plant Sci 69:481–490CrossRefGoogle Scholar
  23. Jordan WR, Monk RL, Miller FR, Rosenow DT, Clark RE, Shouse PJ (1984) Environmental physiology of sorghum. I. Environmental and genetic control of epicuticular wax load. Crop Sci 23:552–555Google Scholar
  24. Kamoshita A, Wade LJ, Ali ML, Pathan MS, Zhang J, Sarkarang S et al (2002a) Mapping QTLs for root morphology of a rice population adapted to rainfed lowland conditions. Theor Appl Genet 104:880–893. doi: 10.1007/s00122-001-0837-5 PubMedCrossRefGoogle Scholar
  25. Kamoshita A, Zhang J, Siopongo J, Sarkarung S, Nguyen HT, Wade LJ (2002b) Effects of phenotyping environment on identification of quantitative trait loci for rice root morphology under anaerobic conditions. Crop Sci 42(1):255–265PubMedGoogle Scholar
  26. Kumar R, Venuprasad R, Atlin GN (2007) Genetic analysis of rainfed lowland ricedrought tolerance under naturally-occurring stress in eastern India: Heritability and QTL effects. Field Crops Res 103:42–52. doi: 10.1016/j.fcr.2007.04.013 CrossRefGoogle Scholar
  27. Lafitte HR, Price AH, Courtois B (2003) Yield response to water deficit in an upland rice mapping population: associations among traits and genetic markers. Theor Appl Genet 109:1237–1246. doi: 10.1007/s00122-004-1731-8 CrossRefGoogle Scholar
  28. Lafitte HR, Li ZK, Vijayakumar CHM, Gao YM, Shi Y, Xu JL et al (2006) Improvement of rice drought tolerance through backcross breeding: Evaluation of donors and selection in drought nurseries. Field Crops Res 97:77–86. doi: 10.1016/j.fcr.2005.08.017 CrossRefGoogle Scholar
  29. Lanceras JC, Pantuwan G, Jongdee B, Toojinda T (2004) Quantitative trait loci associated with drought tolerance at reproductive stage in rice. Plant Physiol 135:384–399. doi: 10.1104/pp. 103.035527 PubMedCrossRefGoogle Scholar
  30. Lebreton C, Lazic-Jancic V, Steed A, Pekai S, Quarrie SA (1995) Identification of QTL for drought responses in maize and their use in testing causal relationships between traits. J Exp Bot 46:853–865. doi: 10.1093/jxb/46.7.853 CrossRefGoogle Scholar
  31. Lilley JM, Ludlow MM, McCouch SR, O’Toole JC (1996) Locating QTL for osmotic adjustment and dehydration tolerance in rice. J Exp Bot 47:1427–1436. doi: 10.1093/jxb/47.9.1427 CrossRefGoogle Scholar
  32. Lincoln S, Daly M, Lander E (1992) Mapping genes controlling quantitative traits with MAPMAKER/EXP 3.0. Whitehead Institute Technical report, 3rd edn.Whitehead Institute, Cambridge, MA, USA, pp 213–224Google Scholar
  33. Mathews KL, Chapman SC, Trethowan R, Singh RP, Crossa J, Pfeiffer W et al (2006) Global adaptation of spring bread and durum wheat lines near-isogenic for major reduced height genes. Crop Sci 6:603–613. doi: 10.2135/cropsci2005.05-0056 CrossRefGoogle Scholar
  34. Nguyen HT, Babu RC, Blum A (1997) Breeding for drought resistance in rice: physiology and molecular genetics considerations. Crop Sci 37:1426–1434Google Scholar
  35. Nguyen TTT, Klueva N, Chamareck V, Aarti A, Magpantay G, Millene ACM et al (2004) Saturation mapping of QTL regions and identification of putative candidate genes for drought tolerance in rice. Mol Genet Genomics 272:35–46. doi: 10.1007/s00438-004-1025-5 PubMedCrossRefGoogle Scholar
  36. O’Toole JC (1982) Adaptation of rice to drought prone environments. In: Drought resistance in crops with emphasis on rice. IRRI, Los Banos, Philippines, pp 195–213Google Scholar
  37. O’Toole JC (1999) Molecular approaches for the genetic improvement of cereals for stable production in water limited environments. In: Ribaut JM, Poland D (eds) A strategic planning workshop. CIMMYT, El Batan, MexicoGoogle Scholar
  38. O’Toole JC, Cruz RT (1983) Genotypic variation in epicuticular wax of rice. Crop Sci 23:393–394Google Scholar
  39. Paje MCM, Ludlow MM, Lawn RJ (1988) Variation among soybean (Glycine max L. Merr.) accessions in epidermal conductance of leaves. Aust J Agric Res 39:363–373. doi: 10.1071/AR9880363 CrossRefGoogle Scholar
  40. Pantuwan G, Fukai S, Cooper M, Rajatasereekal S, O’Toole JC (2002) Yield response of rice genotypes to different types of drought under rainfed low lands part 1. Grain yield and yield components. Field Crops Res 73:153–168. doi: 10.1016/S0378-4290(01)00187-3 CrossRefGoogle Scholar
  41. Paterson AH, Lander E, Hewitt JD, Peterson S, Lincoln SE, Tanksley SD (1988) Resolution of quantitative traits into Mendelian factors by using a complete linkage map of restriction fragment length polymorphisms. Nature 335:721–726. doi: 10.1038/335721a0 PubMedCrossRefGoogle Scholar
  42. Premachandra GS, Saneoka H, Fujita K, Ogata S (1992) Leaf water relations, osmotic adjustment, cell membrane stability, epicuticular wax load and growth as affected by increasing water deficit in sorghum. J Exp Bot 43:1569–1576. doi: 10.1093/jxb/43.12.1569 CrossRefGoogle Scholar
  43. Reddy CK, Prasad GVSS (1986) Variability for epicuticular wax content in upland rice. Indian J Agric Sci 56:798–799Google Scholar
  44. Ribaut JM, Hoisington DA, Deutsch JA, Jiang C, Gonzalez-de-Leon D (1997) Identification of quantitative trait loci under drought conditions in tropical maize.1.Flowering parameters and the Anthesis–silking interval. Theor Appl Genet 92:905–914. doi: 10.1007/BF00221905 CrossRefGoogle Scholar
  45. Sanchez FJ, Manzanares de Andres M, Tenorio EFJL, Ayerbe L (2001) Residual transpiration rate, epicuticular wax load and leaf colour of pea plants in drought conditions. Influence on harvest index and canopy temperature. Eur J Agron 15:57–70. doi: 10.1016/S1161-0301(01)00094-6 CrossRefGoogle Scholar
  46. SAS Institute Inc (1990) SAS/STAT user’s guide, Version 6, 4th edn, Vols 1 and 2. SAS Institute Inc., Cary, North Carolina, USAGoogle Scholar
  47. Singh K, Ishii T, Parco A, Huang N, Brar DS, Khush GS (1996) Centromere mapping and orientation of the molecular linkage map of rice (Oryza sativa L.). Proc Natl Acad Sci USA 93:6163–6168. doi: 10.1073/pnas.93.12.6163 PubMedCrossRefGoogle Scholar
  48. Tripathy JN, Zhang J, Robin S, Nguyen TT, Nguyen HT (2000) QTL for cell-membrane stability mapped in rice (Oryza sativa L.). Theor Appl Genet 100:1197–1202. doi: 10.1007/s001220051424 CrossRefGoogle Scholar
  49. Tuberosa R, Salvi S (2007) From QTLs to genes controlling root traits in maize. In: Spiertz JHJ, Struik PC, van Laar HH (eds) Scale and complexity in plant systems research: Gene-plant-crop relations. Springer, pp 15–24Google Scholar
  50. Uptmoor R, Wenzel W, Ayisi K, Donaldson G, Gehringer A, Friedt W et al (2006) Variation of the genomic proportion of the recurrent parent in BC1 and its relation to yield performance in sorghum (Sorghum bicolor) breeding for low-input conditions. Plant Breed 125:532–534. doi: 10.1111/j.1439-0523.2006.01270.x CrossRefGoogle Scholar
  51. Zhang J, Zheng HG, Aarti A, Pantuwan G, Nguyen TT, Tripathy JN et al (2001) Locating genomic regions associated with components of drought resistance in rice: Comparative mapping within and across species. Theor Appl Genet 103:19–29. doi: 10.1007/s001220000534 CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2008

Authors and Affiliations

  • S. Srinivasan
    • 1
  • S. Michael Gomez
    • 2
  • S. Satheesh Kumar
    • 3
  • S. K. Ganesh
    • 4
  • K. R. Biji
    • 5
  • A. Senthil
    • 5
  • R. Chandra Babu
    • 6
  1. 1.Agricultural College and Research InstituteKillikulamIndia
  2. 2.Department of Plant and Soil ScienceTexas Tech UniversityLubbockUSA
  3. 3.Department of Agronomy, Throckmorton Plant Sciences CentreKansas State UniversityManhattanUSA
  4. 4.National Pulses Research CenterPudukkottaiIndia
  5. 5.Centre for Plant Molecular BiologyTamil Nadu Agricultural UniversityCoimbatoreIndia
  6. 6.School of Post Graduate StudiesTamil Nadu Agricultural UniversityCoimbatoreIndia

Personalised recommendations