Plant Growth Regulation

, Volume 48, Issue 2, pp 145–155 | Cite as

Organic Acids Accumulation and Antioxidant Enzyme Activities in Thlaspi caerulescens under Zn and Cd Stress

Article

Abstract

Growth, organic acid and phytochelatin accumulation, as well as the activity of several antioxidative enzymes, i.e. superoxide dismutase (SOD), ascorbate peroxidase (APX) guaiacol peroxidase (POX) and catalase (CAT) were investigated under Zn and Cd stress in hydroponically growing plants of Thlaspi caerulescens population from Plombières, Belgium. Tissue Zn and Cd concentration increased (the highest concentration of both was in roots) as the concentration of these metals increased in the nutrient solution. Increasing Zn concentration enhanced plant growth, while with Cd it declined compared to the control. Both metals stimulated malate accumulation in shoots, Zn also caused citrate to increase. Zn did not induce phytochelatin (PC) accumulation. In plants exposed to Cd, PC concentration increased with increasing Cd concentration, but decreased with time of exposure. Under Zn stress SOD activity increased, but APX activity was higher at 500 and 1000 μM Zn and CAT activity only at 500 μM Zn in comparison with the control. CAT activity decreased in Cd- and Zn-stressed plants. The results suggest that relative to other populations, a T. caerulescens population from Plombières, when grown in hydroponics, was characterized by low Zn and Cd uptake and their translocation to shoots and tolerance to both metals. The accumulation of malate and citrate, but not PC accumulation was responsible for Zn tolerance. Cd tolerance seems to be due to neither PC production nor accumulation of organic acids.

Keywords

Cadmium Citrate and malate concentration Hyperaccumulator Oxidative stress Phytochelatins Thlaspi caerulescens Zinc 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Assunção, A.G.L., Bookum, W.M., Nelissen, H.J.M., Vooijs, R., Schat, H., Ernst, W.H.O. 2003aDifferential metal-specific tolerance and accumulation patterns among Thlaspi caerulescens populations originating from different soil typesNew Phytol.159411419Google Scholar
  2. Assunção, A.G.L., Schat, H., Aarts, M.G.M. 2003bThlaspi caerulescensan attractive model species to study heavy metal hyperaccumulation in plantsNew Phytol.159351360Google Scholar
  3. Boominathan, R., Doran, P.M. 2002Ni-induced oxidative stress in roots of the Ni hyperaccumulatorAlyssum bertoloniiNew Phytol.156205215CrossRefGoogle Scholar
  4. Boominathan, R., Doran, P.M. 2003Organic acid complexation, heavy metal distribution and the effect of ATPase inhibition in hairy roots of hyperaccumulator plant speciesJ. Biotechnol.101131146CrossRefPubMedGoogle Scholar
  5. Bradford, M. 1976A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye bindingAnal. Biochem.72248254CrossRefPubMedGoogle Scholar
  6. Brown, S.L., Chaney, R.L., Angle, J.S., Baker, A.J.M. 1995Zinc and cadmium uptake by hyperaccumulator Thlaspi caerulescens grown in nutrient solutionSoil Sci. Soc. Am. J.59125133Google Scholar
  7. Cakmak, I. 2000Possible roles of zinc in protecting plant cells from damage by reactive oxygen speciesNew Phytol.146185205CrossRefGoogle Scholar
  8. Cuypers, A., Vangronsveld, J., Clijsters, H. 2001The redox status of plant cells (AsA and GSH) is sensitive to zinc imposed oxidative stress in roots and primary leaves of Phaseolus vulgarisPlant Physiol. Biochem.39657664CrossRefGoogle Scholar
  9. Cuypers, A., Vangronsveld, J., Clijsters, H. 2002Peroxidases in roots and primary leaves of Phaseolus vulgaris copper and zinc phytotoxicity : a comparisonJ. Plant Physiol.159869876CrossRefGoogle Scholar
  10. Ebbs, S., Lau, I., Ahner, B., Kochian, L. 2002Phytochelatin synthesis is not responsible for Cd tolerance in the Zn/Cd hyperaccumulator Thlaspi caerulescens (J.&C. Presl.)Planta214635640CrossRefPubMedGoogle Scholar
  11. Frey, B., Keller, C., Zierold, K., Schulin, R. 2000Distribution of Zn in functionally different leaf epidermal cells of the hyperaccumulator Thlaspi caerulescensPlant Cell Environ.23675687Google Scholar
  12. Kabata-Pendias, A., Pendias, H. 1992Trace elements in soils and plants2CRC PressBoca Raton, FloridaGoogle Scholar
  13. Krämer, U. 2000Cadmium for all meals – plants with an unusual appetiteNew Phytol.14515Google Scholar
  14. Küpper, H., Zhao, F.J., McGrath, S.P. 1999Cellular compartmentation of zinc in leaves of the hyperaccumulator Thlaspi caerulescensPlant Physiol.119305311Google Scholar
  15. Lasat, M.M., Baker, A.J.M., Kochian, L.V. 1998Altered zinc compartmentation in the root symplasm and stimulated Zn2+ absorption into the leaf as mechanisms involved in zinc hyperaccumulation in Thlaspi caerulescensPlant Physiol.118875883CrossRefPubMedGoogle Scholar
  16. Lombi, E., Zhao, F.J., McGrath, S.P., Young, S.D., Sacchi, G.A. 2001Physiological evidence for a high-affinity cadmium transporter highly expressed in a Thlaspi caerulescens ecotypeNew Phytol.1495360CrossRefGoogle Scholar
  17. Meerts, P., Isacker, N. 1997Heavy metal tolerance and accumulation in metallicolous and non-metallicolous populations of Thlaspi caerulescens from continental EuropePlant Ecol.133221231CrossRefGoogle Scholar
  18. Milone, M.T., Sgherri, C., Clijsters, H., Navari-Izzo, F. 2003Antioxidative responses of wheat treated with realistic concentration of cadmiumEnviron. Exp. Bot.50265276CrossRefGoogle Scholar
  19. Milosević, N., Slusarenko, A.J. 1996Active oxygen metabolism and lignification in the hypersensitive response in beanPhysiol. Mol. Plant Pathol.49148158Google Scholar
  20. Ozturk, L., Karanlik, S., Ozkutlu, F., Cakmak, I., Kochian, L.V. 2003Shoot biomass and zinc/cadmium uptake for hyperaccumulator Thlaspi species in response to growth on a zinc-deficient calcareous soilPlant Sci.16410951101CrossRefGoogle Scholar
  21. Persans, M.W., Salt, D.E. 2000Possible molecular mechanisms involved in nickel, zinc and selenium hyperaccumulation in plantsBiotech. Gen. Eng. Rev.17389413Google Scholar
  22. Prasad, K.V.S.K., Saradhi, P.P., Sharmila, P. 1999Concerted action of antioxidant enzymes and curtailed growth under zinc toxicity in Brassica junceaEnviron. Exp. Bot.42110Google Scholar
  23. Rao, K.V.M., Sresty, T.V.S. 2000Antioxidative parameters in the seedlings of pigepea (Cajanus cajan (L.) Millspaugh) in response to Zn and Ni stressesPlant Sci.157113128Google Scholar
  24. Rauser, W.E. 1999Structure and function of metal chelators produced by plantsCell Biochem. Biophys.311948PubMedGoogle Scholar
  25. Roosens, N., Verbruggen, N., Meerts, P., Ximénez-Embún, P., Smith, J.A.C. 2003Natural variation in cadmium tolerance and its relationship to metal hyperaccumulation for seven populations of Thlaspi caerulescens from western EuropePlant Cell Environ.2616571672CrossRefGoogle Scholar
  26. Salt, D.E., Pickering, I.J., Prince, R.C., Gleba, D., Smith, R.D., Raskin, I. 1997Metal accumulation by aquacultured seedlings of Indian mustardEnviron. Sci. Technol.3116361644CrossRefGoogle Scholar
  27. Salt, D.E., Prince, R.C., Baker, A.J.M., Raskin, I., Pickering, I.J. 1999Zinc ligands in the metal hyperaccumulator Thlaspi caerulescens as determined using X-ray absorption spectroscopyEnviron. Sci. Technol.33713717CrossRefGoogle Scholar
  28. Schat, H., Llugany, M., Vooijs, R., Hartley-Whitaker, J., Bleeker, P.M. 2002The role of phytochelatins in constitutive and adaptive heavy metal tolerances in hyperaccumulator and non-hyperaccumulator metallophytesJ. Exp. Bot.5323812392CrossRefPubMedGoogle Scholar
  29. Shen, Z.G., Zhao, F.J., McGrath, S.P. 1997Uptake and transport of zinc in the hyperaccumulator Thlaspi caerulescens the non-hyperaccumulator Thlaspi ochroleucumPlant Cell Environ.20898906CrossRefGoogle Scholar
  30. Siedlecka, A., Tukendorf, A., Skórzyńska-Polit, E., Maksymiec, W., Wójcik, M., Baszyński, T., Krupa, Z. 2001

    Angiosperms (Asteraceae, Convolvulaceae, Fabaceae and Poaceae; other than Brassicaceae)

    Prasad, M.N.V. eds. Metals in the Environment: Analysis by BiodiversityMarcel Dekker Inc.New York, USA171217
    Google Scholar
  31. Skórzyńska-Polit, E., Drążkiewicz, M., Krupa, Z. 2003The activity of the antioxidative system in cadmium-treated Arabidopsis thalianaBiol. Plant.477178Google Scholar
  32. Stayanova, Z., Doncheva, S. 2002The effect of zinc supply and succinate treatment on plant growth and mineral uptake in pea plantBraz. J. Plant Physiol.14111116Google Scholar
  33. Tolrà, R.P., Poschenrieder, Ch., Barceló, J. 1996aZinc hyperaccumulation in Thlaspi caerulescens. I. Influence on growth and mineral nutritionJ. Plant Nutr.1915311540Google Scholar
  34. Tolrà, R.P., Poschenrieder, Ch., Barceló, J. 1996bZinc hyperaccumulation in Thlaspi caerulescens. II. Influence on organic acidsJ. Plant Nutr.1915411550Google Scholar
  35. Vázquez, M.D., Barceló, J., Poschenrieder, Ch., Mádico, J., Hatton, P., Baker, A.J.M., Cope, G.H. 1992Localization of zinc and cadmium in Thlaspi caerulescens (Brassicaceae), a metallophyte that can accumulate both metalsJ. Plant Physiol.140350355Google Scholar
  36. Assche, F., Clijsters, H. 1990Effects of metals on enzyme activity in plantsPlant Cell Environ.13195206Google Scholar
  37. Whiting, S.N., Broadley, M.R., White, P.J. 2003Applying a solute transfer model to phytoextraction: zinc acquisition by srsid9240717 Thlaspi caerulescensPlant Soil2494556CrossRefGoogle Scholar
  38. Whiting, S.N., Leake, J.R., McGrath, S.P., Baker, A.J.M. 2000Positive responses to Zn and Cd by roots of the Zn and Cd hyperaccumulator Thlaspi caerulescensNew Phytol.145199210CrossRefGoogle Scholar
  39. Wójcik, M., Vangronsveld, J., Tukiendorf, A. 2005Cadmium tolerance in Thlaspi caerulescens. I. Growth parameters, metal accumulation and phytochelatin synthesis in response to cadmiumEnviron. Exp. Bot.53151161Google Scholar
  40. Zago, M.P., Oteiza, P.I. 2001The antioxidant properties of zinc: interactions with iron and antioxidantsFree Radical. Biol. Med.31266274CrossRefGoogle Scholar
  41. Zhao, F.J., Hamon, R.E., Lombi, E., McLaughlin, M.J., McGrath, S.P. 2002Characteristics of cadmium uptake in two contrasting ecotypes of the hyperaccumulator Thlaspi caerulescensJ. Exp. Bot.53535543CrossRefPubMedGoogle Scholar

Copyright information

© Springer 2006

Authors and Affiliations

  • M. Wójcik
    • 1
  • E. Skórzyńska-Polit
    • 1
  • A. Tukiendorf
    • 1
  1. 1.Department of Plant PhysiologyMaria Curie-Skłodowska UniversityLublinPoland

Personalised recommendations