Plant Growth Regulation

, Volume 48, Issue 2, pp 97–109 | Cite as

Phospholipids as Plant Growth Regulators

  • A. Keith CowanEmail author


In this paper the potential to use phospholipids and lysophospholipids as plant growth regulators is discussed. Recent evidence shows that phospholipids and phospholipases play an important signalling role in the normal course of plant development and in the response of plants to abiotic and biotic stress. It is apparent that phospholipase A (PLA), C (PLC) and D (PLD), lysophospholipids, and phosphatidic acid (PA) are key components of plant lipid signalling pathways. By comparison, there is very little information available on the effect of exogenously applied phospholipids on plant growth and development. This paper serves to introduce phospholipids as a novel class of plant growth regulator for use in commercial plant production. The biochemistry and physiology of phospholipids is discussed in relation to studies in which phospholipids and lysophospholipids have been applied to plants and plant parts. Implicit in the observations is that phospholipids impact the hypersensitive response and systemic acquired resistance in plants to improve crop performance and product quality. Based on published data, a scheme outlining a possible mode of action of exogenously applied phospholipids is proposed.


Lysophospholipids Phospholipids Plant growth regulators 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Austin-Brown, S.L., Chapman, K.D. 2002Inhibition of phospholipase Dα by N-acylethanolaminesPlant Physiol.12918921898CrossRefPubMedGoogle Scholar
  2. Baburina, I., Jackowski, S. 1999Cellular responses to excess phospholipidJ. Biol. Chem.27494009408CrossRefPubMedGoogle Scholar
  3. Blancflor, E.B., Hou, G., Chapman, K.D. 2003Elevated levels of N-lauroylethanolaminean endogenous constituent of desiccated seeds, disrupt normal root development in Arabidopsis thaliana seedlingsPlanta217206217Google Scholar
  4. Blein, J.-P., Coutos-Thévenot, P., Marion, D., Ponchet, M. 2002From elicitins to lipid-transfer proteins: a new insight in cell signalling involved in plant defence mechanismsTrends Plant Sci.7293296CrossRefPubMedGoogle Scholar
  5. Böhme, K., Li, Y., Charlot, F., Grierson, C., Marrocco, K., Okada, K., Laloue, M., Nogué, F. 2004The Arabidopsis COW1 gene encodes a phosphatidylinositol transfer protein essential for root hair tip growthPlant J.40686698PubMedGoogle Scholar
  6. Bomstein, R.A. 1965A new class of phosphatides isolated from soft wheat flourBiochem. Biophys. Res. Comm.214954CrossRefPubMedGoogle Scholar
  7. Chapman, K.D. 1998Phospholipase activity during plant growth and development and in response to environmental stressTrends Plant Sci.3419426CrossRefGoogle Scholar
  8. Chapman, K.D. 2004Occurrencemetabolismand prospective functions of N-acylethanolamines in plantsProg. Lipid Res.43302327PubMedGoogle Scholar
  9. Chapman, K.D., Moore, T.S.,Jr. 1993N-Acylphosphatidylethanolamine synthesis in plants: occurrencemolecular composition and phospholipid originArch. Biochem. Biophys.3012133CrossRefPubMedGoogle Scholar
  10. Chapman, K.D., Lin, I., Desouza, A.D. 1995Metabolism of cottonseed microsomal N-acylphosphatidylethanolamineArch. Biochem. Biophys.318401407CrossRefPubMedGoogle Scholar
  11. Chapman, K.D., Sprinkle, W.B. 1996Developmental, tissue-specific and environmental factors regulate the biosynthesis of N-acylphosphatidylethanolamine in cotton (Gossypium hirsutum L.)J. Plant Physiol.149277284Google Scholar
  12. Chapman, K.D., Tripathy, S., Venables, B., Desouza, A.D. 1998N-Acylethanolamines: Formation and molecular composition of a new class of plant lipidsPlant Physiol.11611631168CrossRefPubMedGoogle Scholar
  13. Chapman, K.D., Venables, B., Markovic, R., Blair, R.W.,Jr., Bettinger, C. 1999N-Acylethanolamines in seeds. Quantification of molecular species and their degradation upon imbibitionPlant Physiol.12011571164CrossRefPubMedGoogle Scholar
  14. Cremonini, M.A., Laghi, L., Placucci, G. 2004Investigation of commercial lecithin by 31P NMR in a ternary CUBO solventJ. Sci. Food Agric.84786790CrossRefGoogle Scholar
  15. Dawson, R.M.C., Clarke, N., Quarles, R.H. 1969N-Acylphosphatidylethanolaminea phospholipid that is rapidly metabolized during early germination of pea seedsBiochem. J.114265270PubMedGoogle Scholar
  16. Jong, C.F., Laxalt, A.M., Bargmann, B.O.R., Witt, P.J.G.M., Joosten, M.H.A.J., Munnik, T. 2004Phosphatidic acid accumulation is an early response in the Cf-4/Avr4 interactionPlant J.39112PubMedGoogle Scholar
  17. Roche, I.A., Andrews, C.J., Kates, M. 1973Changes in phospholipid composition of a winter wheat cultivar during germination at 2 °C and 24 °CPlant Physiol.51468473Google Scholar
  18. Delhaize, E., Hebb, D.M., Richards, K.D., Lin, J.-M., Ryan, P.R., Gardner, R.C. 1999Cloning and expression of a wheat (Triticum aestivum L.) phosphatidylserine synthase cDNAJ. Biol. Chem.27470827088CrossRefPubMedGoogle Scholar
  19. Douliez, J.-P., Michin, T., Marion, D. 2000Steady-state tyrosine fluorescence to study the lipid-binding properties of a wheat non-specific lipid-transfer protein (nsLTP)Biochim. Biophys. Acta14676572Google Scholar
  20. Fan, L., Zheng, S., Wang, X. 1997Antisense suppression of phospholipase Dα retards abscisic acid- and ethylene-promoted senescence of postharvest Arabidopsis leavesPlant Cell921832196CrossRefPubMedGoogle Scholar
  21. Farag, K.M., Palta, J.P. 1991Improving postharvest keeping quality of vine-ripened tomato fruits with a natural lipidHortScience26162Google Scholar
  22. Farag, K.M., Palta, J.P. 1993Use of lysophosphatidylethanolaminea natural lipid, to retard tomato leaf and fruit senescencePhysiol. Plant.87515521CrossRefGoogle Scholar
  23. Farmer, E.E., Alméras, A., Krishnamurthy, V. 2003Jasmonates and related oxylipins in plant responses to pathogenesis and herbivoryCurr. Opin. Plant Biol.6372378CrossRefPubMedGoogle Scholar
  24. Fischer, U., Men, S., Grebe, M. 2004Lipid function in plant cell polarityCurr. Opin. Plant Biol.7670676PubMedGoogle Scholar
  25. Foreman, J., Demidchik, V., Bothwell, J.H.F., Mylona, P., Miedema, H., Torres, M.A., Linstead, P., Costa, S., Brownlee, C., Jones, J.D.G., Davies, J.M., Dolan, L. 2003Reactive oxygen species produced by NADPH oxidase regulate plant cell growthNature422442446CrossRefPubMedGoogle Scholar
  26. Frentzen, M. 2004Phosphatidylglycerol and sulfoquinovosyldiacylglycerol: anionic membrane lpids and phosphate regulationCurr. Opin. Plant Biol.7270276CrossRefPubMedGoogle Scholar
  27. Gomès, E., Venema, K., Simon-Plas, F., Milat, M.-L., Palmgren, M.G., Blein, J.-P. 1996Activation of the plant plasma membrane H+ATPase. Is there a direct mechanism between lysophosphatidylcholine and the C-terminal part of the enzyme?FEBS Lett.3984852PubMedGoogle Scholar
  28. Hallouin, M., Ghelis, T., Brault, M., Bardat, F., Cornel, D., Miginiac, E., Rona, J.-P., Sotta, B., Jeanette, E. 2002Plasmalemma abscisic acid perception leads to RAB18 expression via phospholipase D activation in Arabidopsis suspension cellsPlant Physiol.130265272CrossRefPubMedGoogle Scholar
  29. Hammond-Kosack, K., Jones, J. 2000Responses to plant pathogensBuchanan, B.BGruissem, W.Jones, R.L. eds. Biochemistry and Molecular Biology of PlantsAmerican Society of Plant biologyRockville11021157Google Scholar
  30. Helmerich, G., Koehler, P. 2003Comparison of methods for the quantitative determination of phospholipids in lecithins and flour improversJ. Agric. Food Chem.5166456651CrossRefPubMedGoogle Scholar
  31. Härtel, H., Essigmann, B., Lokstein, H., Hoffmann-Benning, S., Peters-Kottig, M., Benning, C. 1998The phospholipid-deficient pho1 mutant of Arabidopsis thaliana is affected in the organization, but not in the light acclimation, of the thylakoid membraneBiochim. Biophys. Acta1415205218PubMedGoogle Scholar
  32. Jung, H.W., Kim, W., Hwang, B.K. 2003Three pathogen-inducible genes encoding lipid transfer protein from pepper are differentially activated by pathogens, abiotic, and environmental stressesPlant Cell Environ.26915928CrossRefPubMedGoogle Scholar
  33. Kader, J.-C. 1996Lipid-transfer proteins in plantsAnnu. Rev. Plant Physiol. Plant Mol. Biol.47627654CrossRefPubMedGoogle Scholar
  34. Karibe, H., Komatsu, S., Hirano, H. 1995A calcium-dependent and phospholipid-dependent protein-kinase from rice (Oryza sativa) leavesPhysiol. Plant.95127133CrossRefGoogle Scholar
  35. Katagiri, T., Ishiyama, K., Kato, T., Tabata, S., Kobayashi, M., Shinozaki, K. 2005An important role of phosphatidic acid in ABA signaling during germination in Arabidopsis thalianaPlant J.43107117CrossRefPubMedGoogle Scholar
  36. Laxalt, A.M., Munnik, T. 2002Phospholipid signaling in plant defenceCurr. Opin. Plant Biol.517CrossRefGoogle Scholar
  37. Lee, H.Y., Bahn, S.C., Kang, Y., Lee, K.H., Kim, H.J., Noh, E.K., Palta, J.P., Shin, J.S., Ryu, S.B. 2003Secretory low molecular weight phospholipase A2 plays important roles in cell elongation and shoot gravitropism in ArabidopsisPlant Cell1519902002CrossRefPubMedGoogle Scholar
  38. Lee, H.Y., Bahn, S.C., Shin, J.S., Hwang, I., Back, K., Doelling, J.H., Ryu, S.B. 2005Multiple forms of secretory phospholipase A2 in plantsProg. Lipid Res.445267PubMedGoogle Scholar
  39. Lee, S., Suh, S., Kim, S., Carin, R.C., Kwak, J.M., Nam, H.-G., Lee, Y. 1997Systemic elevation of phosphatidic acid and lysophospholipid levels in wounded plantsPlant J.12547556Google Scholar
  40. Lemtiri-Chlieh, F., MacRobbie, E.A.C., Webb, A.A.R., Manison, N.F., Brownlee, C., Skepper, J.N., Chen, J., Prestwich, G.D., Brearley, C.A. 2003Inositol hexakisphosphate mobilizes an endomembrane store of calcium in guard cellsProc. Nalt. Acad. Sci. USA1001009110095Google Scholar
  41. Lim, P.O., Woo, H.R., Nam, H.G. 2003Molecular genetics of leaf senescence in ArabidopsisTrends Plant Sci.8272278CrossRefPubMedGoogle Scholar
  42. Lin, W.H., Ye, R., Ma, H., Xu, Z.H., Xue, H.W. 2004DNA chip-based expression profile analysis indicates involvement of the phosphatidylinositol signaling pathway in multiple plant responses to hormone and abiotic treatmentsCell Res.143445CrossRefPubMedGoogle Scholar
  43. Marshall, M.O., Kates, M. 1974Biosynthesis of nitrogenous phospholipids in spinach leavesCan. J. Biochem. Cell B52469482Google Scholar
  44. Martiny-Baron, G.M., Schere, G.F.E. 1989Phospholipid-stimulated protein kinase in plantsJ. Biol. Chem.2641805218059PubMedGoogle Scholar
  45. McAndrew, R.S., Chapman, K.D. 1998Enzymology of cottonseed microsomal N-acylphosphatidylethanolamine synthase: kinetic properties and mechanism-based inactivationBiochim. Biophys. Acta13902136PubMedGoogle Scholar
  46. McNeil, S.D., Nuccio, M.L., Ziemak, M.J., Hanson, A.D. 2001Enhanced synthesis of choline and glycine betaine in transgenic tobacco plants that overexpress phosphoethanolamine N-methyltransferaseProc. Natl. Acad. Sci. USA981000110005PubMedGoogle Scholar
  47. Meijer, H.J.G., Munnik, T. 2003Phospholipid-based signaling in plantsAnnu. Rev. Plant Biol.54265306CrossRefPubMedGoogle Scholar
  48. Meuller-Roeber, B., Pical, C. 2002Inositol phospholipid metabolism in Arabidopsis. Characterized and putative isoforms of inositol phospholipid kinase and phosphoinositide-specific phospholipase CPlant Physiol.1302246Google Scholar
  49. Moore, T.S.,Jr. 1975Phosphatidylserine synthesis in castor bean endospermPlant Physiol.56177180Google Scholar
  50. Moreau, P., Hartmann, M.-A., Perret, A.-M., Sturbois-Balcerzak, B., Cassagne, C. 1998Transport of sterols to the plasma membrane of leek seedlingsPlant Physiol.117931937CrossRefPubMedGoogle Scholar
  51. Munnik, T. 2001Phosphatidic acid: an emerging plant lipid second messengerTrends Plant Sci.6227233CrossRefPubMedGoogle Scholar
  52. O’Brien, I.E., Bagauley, B.C., Murray, B.G., Morris, B.A.M., Ferguson, I.B. 1998Early stages of the apoptotic pathway in plant cells are reversiblePlant J.13803814Google Scholar
  53. Özgen, M., Park, S., Palta, J.P. 2005Mitigation of ethylene-promoted leaf senescence by a natural lipidlysophosphatidylethanolamineHortScience4011661167Google Scholar
  54. Palmgren, M.G., Sommarin, M. 1989Lysophosphatidylcholine stimulates ATP dependent proton accumulation in isolated oat root plasma membrane vesiclesPlant Physiol.9010091014Google Scholar
  55. Palmgren, M.G., Sommarin, M., Ulvskov, P., Jørgensen, P.L. 1988Modulation of plasma membrane H+-ATPase from oat roots by lysophosphatidylcholinefree fatty acids and phospholipase A2Physiol. Plant741119Google Scholar
  56. Park, J., Gu, Y., Lee, Y., Yang, Z., Lee, Y. 2004Phosphatidic acid induces leaf cell death in Arabidopsis by activating the rho-related small G protein GTPase-mediated pathway of reactive oxygen species generationPlant Physiol.134129136PubMedGoogle Scholar
  57. Park, K.-Y., Jung, J-Y., Park, J., Hwang, J.-U., Kim, Y.-W., Hwang, I., Lee, Y. 2003A role for phosphatidylinositol 3-phosphate in abscisic acid-induced reactive oxygen species generation in guard cellsPlant Physiol.1329298CrossRefPubMedGoogle Scholar
  58. Potoký, M., Eliáš, M., Profotová, B., Novotná, Z., Valentová, O., Žárský, V. 2003Phosphatidic acid produced by phospholipases D is required for tobacco pollen tube growthPlanta217122130Google Scholar
  59. Rawyler, A.J., Braendle, R.A. 2001N-Acylphosphatidylethanolamine accumulation in potato cells upon energy shortage caused by anoxia or respiratory inhibitorsPlant Physiol.127240251CrossRefPubMedGoogle Scholar
  60. Reid, M.S., Padfield, C.A.S. 1975Control of bitter pit in apples with lecithin and calciumN. Z. J. Agric. Res.18383385Google Scholar
  61. Repp, A., Mikami, K., Mittmann, F., Hartman, E. 2004Phosphoinositide-specific phospholipase C is involved in cytokinin and gravity responses in the moss Physcomitrella patensPlant J.40250259CrossRefPubMedGoogle Scholar
  62. Romanov, G.A., Kieber, J.J., Schmülling, T. 2002A rapid cytokinin response assay in Arabidopsis indicates a role for phospholipase D in cytokinin signalingFEBS Lett.5153943CrossRefPubMedGoogle Scholar
  63. Rontein, D., Wu, W.-I., Voelker, D.R., Hanson, A.D. 2003aMitochondrial phosphatidylserine decarboxylase from higher plants. Functional complementation in yeastlocalization in plants, and overexpression in ArabidopsisPlant Physiol.13216781687CrossRefGoogle Scholar
  64. Rontein, D., Rhodes, D., Hanson, A.D. 2003bEvidence from engineering that decarboxylation of free serine is the major source of ethanolamine moieties in plantsPlant Cell Physiol.4411851191CrossRefGoogle Scholar
  65. Ryu, S.B. 2004Phospholipid-derived signaling mediated by phospholipase A in plantsTrends Plant Sci.9229235CrossRefPubMedGoogle Scholar
  66. Ryu, S.B., Karlsson, B.H., Özgen, M., Palta, J.P. 1997Inhibition of phospholipase D by lysophosphatidylethanolaminea lipid-derived senescence retardantProc. Natl. Acad. Sci. USA941271712721CrossRefPubMedGoogle Scholar
  67. Sandoval, J.A., Huang, Z.H., Garrett, D.C., Gage, D.A., Chapman, K.D. 1995N-Acylphosphatidyl-ethanolamine in dry and imbibing cottonseeds: amounts, molecular species and enzymatic synthesisPlant Physiol.109269275CrossRefPubMedGoogle Scholar
  68. Schmid, H.H.O., Schmid, P.C., Natarajan, V. 1990N-Acylated glycerophospholipids and their derivativesProg. Lipid Res.29143PubMedGoogle Scholar
  69. Scherer, G.F.E. 2002Secondary messengers and phospholipase A2 in auxin signal transductionPlant Mol. Biol.49357372CrossRefPubMedGoogle Scholar
  70. Scherer, G.F.E., Arnold, B. 1997Auxin-induced growth is inhibited by phospholipase A2 inhibitors. Implications for auxin-induced signal transductionPlanta202462469CrossRefGoogle Scholar
  71. Scherer, G.F.E., Hecker, D., Müller, J. 1993Ca2+ ions and lysophospholipids activate phosphorylation of different proteins in plasma membrane and tonoplastJ. Plant Physiol.142425431Google Scholar
  72. Sharples, R.O., Reid, M.S., Turner, N.A. 1979The effects of postharvest mineral element and lecithin treatments on the storage disorders of applesJ. Hort. Sci.54299304Google Scholar
  73. Shrestha, R., Noordimeer, M., Stelt, M., Veldink, G.A., Chapman, K.D. 2002N-Acylethanolamines are metabolized by lipoxygenase and amidohydrolase in competing pathways during cottonseed imbibitionPlant Physiol.130391401CrossRefPubMedGoogle Scholar
  74. Spivak, S.G., Kisel, M.A., Yakovleva, G.A. 2003Boosting the immune system of solanaceous plants by lysophosphatidylcholineRuss. J. Plant Physiol.50332335CrossRefGoogle Scholar
  75. Sutter, J.-U., Homann, U., Thiel, G. 2000Ca2+-stimulated exocytosis in maize coleoptile cellsPlant Cell1211271136CrossRefPubMedGoogle Scholar
  76. Testerink, C., Munnik, T. 2005Phosphatidic acid: a multifunctional stress signaling lipid in plantsTrends Plant Sci.10368375CrossRefPubMedGoogle Scholar
  77. Tripathy, S., Venables, B.J., Chapman, K.D. 1999N-Acylethanolamines in signal transduction of elicitor perception: attenuation of the alkalinization response and activation of defense gene expressionPlant Physiol.12112991308CrossRefPubMedGoogle Scholar
  78. Tripathy, S., Kleppinger-Sparace, K., Dixon, R.A., Chapman, K.D. 2003N-Acylethanolamine signaling in tobacco is mediated by a membrane-associatedhigh-affinity binding proteinPlant Physiol.13117811791CrossRefPubMedGoogle Scholar
  79. Leeuwen, W., Ökrész, L., Bögre, L., Munnik, T. 2004Learning the lipid language of plant signallingTrends Plant Sci9378384PubMedGoogle Scholar
  80. Viehweger, K., Dordschbal, B., Roos, W. 2002Elicitor-activated phospholipase A2 generates lysophosphatidylcholines that mobilize the vacuolar H+ pool for pH signaling via the activation of Na+-dependent proton fluxesPlant Cell1415091525CrossRefPubMedGoogle Scholar
  81. Vincent, P., Maneta-Peyret, L., Cassagne, C., Moreau, P. 2001Phosphatidylserine delivery to endoplasmic retivulum-derived vesicles of plant cells depends on two biosynthetic pathwaysFEBS Lett.4983236CrossRefPubMedGoogle Scholar
  82. Vincent, P., Maneta-Peyret, L., Sturbois-Balcerzak, B., Duvert, M., Cassagne, C., Moreau, P. 1999One of the origins of plasma membrane phosphatidylserine in plant cells is a local synthesis by a serine exchange activityFEBS Lett.4648084CrossRefPubMedGoogle Scholar
  83. Voelker, D.R. 2005Bridging the gaps in phospholipid transportTrends Biochem. Sci.30396404CrossRefPubMedGoogle Scholar
  84. Wang, X. 2001Plant phospholipasesAnnu. Rev. Plant Physiol. Plant Mol. Biol.52211231CrossRefPubMedGoogle Scholar
  85. Wang, X. 2002Phospholipase D in hormonal and stress signalingCurr. Opin. Plant Biol.5408414PubMedGoogle Scholar
  86. Wang, X. 2004Lipid signalingCurr. Opin. Plant Biol.718CrossRefGoogle Scholar
  87. Wang, X. 2005Regulatory functions of phospholipase D and phosphatidic acid in plant growthdevelopmentand stress responsesPlant Physiol.139566573PubMedGoogle Scholar
  88. Welti, R., Li, W., Li, M., Sang, Y., Biesiada, H., Zhou, H.-E., Rajashekar, C.B., Williams, T.D., Wang, X. 2002Profiling membrane lipids in plant stress responses: role of phospholipase Dα in freezing-induced lipid changes in ArabidopsisJ. Biol. Chem.2773199432002CrossRefPubMedGoogle Scholar
  89. Williams, M.E., Torabinejad, J., Cohick, E., Parker, K., Drake, E.J., Thompson, J.E., Hortter, M., DeWald, D.B. 2005Mutations in the Arabidopsis phosphoinositide phosphatase gene SAC9 lead to overaccumulation of PtdIns(4,5)P2 and constitutive expression of the stress-response pathwayPlant Physiol.138686700CrossRefPubMedGoogle Scholar
  90. Wu, G., Robertson, A.J., Liu, X., Zheng, P., Wilen, R.W., Nesbitt, R.W., Gusta, L.V. 2004A lipid transfer protein gene BG-14 is differentially regulated by abiotic stress, ABA, anisomycin, and sphingosine in bromegrass (Bromus inermis)J. Plant Physiol.161449458CrossRefPubMedGoogle Scholar
  91. Yubero-Serrano, E.-M., Moyano, E., Medina-Escobar, N., Muñoz-Blanco, J., Caballero, J.-L. 2003Identification of a strawberry gene encoding a non-specific lipid transfer protein that responds to ABA, wounding and cold stressJ. Exp. Bot.5418651877CrossRefPubMedGoogle Scholar
  92. Zalejski, C., Zhang, Z., Quettier, A., Maldiney, R., Bonnet, M., Brault, M., Demandre, C., Miginiac, E., Rona, J., Sotta, B., Jeanette, E. 2005Diacylglycerol pyrophosphate is a second messenger of abscisic acid signaling in Arabidopsis thaliana suspension cellsPlant J.42145152CrossRefPubMedGoogle Scholar
  93. Zhang, W., Wang, C., Qin, C., Wood, T., Olafsdottir, G., Welti, R., Wang, X. 2003The oleate-stimulated phospholipase D, PLDδ, and phosphatidic acid decrease H2O2-induced cell death in ArabidopsisPlant Cell1522852295PubMedGoogle Scholar

Copyright information

© Springer 2006

Authors and Affiliations

  1. 1.Nutra-Park Inc.MiddletonUSA

Personalised recommendations