Plant Growth Regulation

, Volume 46, Issue 3, pp 267–276 | Cite as

Glutathione-mediated Antioxidative Mechanisms in Sunflower (Helianthus Annuus L.) Cells in Response to Cadmium Stress

  • Susana M. Gallego
  • Marcelo J. Kogan
  • Claudia E. Azpilicueta
  • Clara Peña
  • María L. Tomaro


Cadmium (Cd) homeostasis and detoxification in sunflower (Helianthus annuus L.) cells differing in Cd sensitivity/tolerance were studied by analyzing the glutathione-mediated antioxidant mechanism vis-à-vis phytochelatin biosynthesis in vitro. Calluses exposed to Cd-shock/-acclimatization (150μM) were assayed for oxidative stress, reduced glutathione (GSH), glutathione disulfide (GSSG), phytochelatins (PCs) and reactive oxygen species (ROS). Although Cd did not induce any oxidative stress in Cd-tolerant callus (TCd), it generated oxidative stress in Cd-shock callus (SCd) both in terms of lipid peroxidation and protein oxidation. GSH/GSSG ratio remained similar to control values in the cadmium-acclimatized calluses. However, after acute treatment, there was a decline in both GSH and GSSG levels in SCd with concomitant reduction in the GSH/GSSG ratio. Analysis of PCs was performed using HPLC and mass spectrometry methods. PC concentration in TCd were approximately twice those that in SCd, showing in both cases a 1:2:1 relative proportion for PC n = 2 (PC2): PC n = 3 (PC3): PC n = 4 (PC4). Calluses growing in the presence of Cd developed an increased resistance to paraquat oxidative stress generation. These results indicated that PCs synthesis was an important mechanism for Cd detoxification in sunflower calluses, but the capacity to grow in the presence of Cd is related to the tissues ability to maintain high intracellular levels of GSH.


Antioxidants Cadmium Glutathione Glutathione disulfide Helianthus annuus L. Lipid peroxidation Phytochelatins Protein oxidation Reactive oxygen species Sunflower 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Anderson, M.E. 1985Determination of glutathione and glutathione disulfide in biological samplesMethod. Enzymol.113548554Google Scholar
  2. Baisakhi, B., Patra, J., Panigrahy, R.K., Panda, B.B. 2003Differential antioxidant enzymes and thiol responses of tolerant and non-tolerant clones of Chloris barbata to cadmium-stressActa Physiol. Plant.25357363Google Scholar
  3. Balestrasse, K.B., Gardey, L., Gallego, S.M., Tomaro, M.L. 2001Response of antioxidant defence system in soybean nodules and roots subjected to cadmium stressAust. J. Plant Physiol.28497504Google Scholar
  4. Boominathan, R., Doran, P.M. 2003Cadmium tolerance and antioxidative defenses in hairy roots of the cadmium hyperaccumulator, Thlaspi caerulescensBiotechnol. Bioeng.83158167CrossRefPubMedGoogle Scholar
  5. Chen, J., Zhou, J., Goldsbrough, P.B. 1997Characterization of phytochelatin synthase from tomatoPhysiol. Plant.101165172CrossRefGoogle Scholar
  6. Cho, U.H., Sohn, J.Y. 2004Cadmium-induced changes in antioxidative systems, hydrogen peroxide content and lipid peroxidation in Arabidopsis thalianaJ. Plant Biol.47262269Google Scholar
  7. Clemens, S., Kim, E.J., Neumann, D., Schroeder, J.I. 1999Tolerance to toxic metals by a gene family of phytochelatins synthases from plants and yeastEMBO J.1833253333CrossRefPubMedGoogle Scholar
  8. Cobbett, C., Goldsbrough, P. 2002Phytochelatins and metallothioneins: roles in heavy metal detoxification and homeostasisAnnu. Rev. Plant Biol.5315982PubMedGoogle Scholar
  9. Cobbett, C.S. 2000Phytochelatin biosynthesis and function in heavy-metal detoxificationCurr. Opin. Plant Biol.3211216PubMedGoogle Scholar
  10. de Knecht, J.A., van Baren, N., Ten Bookum, W.M., WongFong Sang, H.W., Koevoets, P.L.M., Schat, H., Verkleij, J.A.C. 1995Synthesis and degradation of phytochelatins in cadmium-sensitive and cadmium-tolerant Silene vulgarisPlant Sci.106918CrossRefGoogle Scholar
  11. de Knecht, J.A., van Dillen, M., Koevoest, P.L.M., Schat, H., Verkleij, J.A.C., Ernst, W.H.O. 1994Phytochelatins in cadmium-sensitive and cadmium-tolerant Silene vulgarisPlant Physiol.104255261PubMedGoogle Scholar
  12. Drazkiewicz, M., Tukendorf, A., Baszynski, T. 2003Age-dependent response of maize leaf segments to cadmium treatment. Effect on chlorophyll fluorescence and phytochelatin accumulationJ. Plant Physiol.160247254CrossRefPubMedGoogle Scholar
  13. Ederli, L., Reale, L., Ferranti, F., Pasqualini, S. 2004Responses induced by high concentration of cadmium in Phragmites australis rootsPhysiol. Plant.1216674CrossRefPubMedGoogle Scholar
  14. Gallego, S.M., Benavides, M.P., Tomaro, M.L. 1999Effect of cadmium ions on antioxidant defense system in sunflower cotyledonsBiol. Plant.424955CrossRefGoogle Scholar
  15. Gallego, S.M., Benavides, M.P., Tomaro, M.L. 2002Involvement of antioxidant defense system in the adaptive response to heavy metal ions in Helianthus annuus L. cellsPlant Growth Regul.361721CrossRefGoogle Scholar
  16. Grill, E., Löffler, S., Winnacker, E.L., Zenk, M.H. 1989Phytochelatins, the heavy-metal-binding peptides of plants, are synthesized from glutathione by a specific γ-glutamylcysteine dipeptidyl transpeptidase (phytochelatin synthase)Proc. Natl. Acad. Sci. USA8638383842PubMedGoogle Scholar
  17. Grill, E., Winnacker, E.L., Zenk, M.H. 1985Phytochelatins: the principal heavy metals complexing peptides of higher plantsScience230674676Google Scholar
  18. Ha, S.B., Smith, A.P., Howden, R., Dietrich, W.M., Bugg, S., O'Conell, M.J., Glodsbrough, P.B., Cobbett, C.S. 1999Phytochelatin synthase genes from Arabidopsis and the yeastSchizosaccharomyces pombePlant Cell1111531164CrossRefPubMedGoogle Scholar
  19. Harada, E., Yamaguchi, Y., Koizumi, N., Hiroshi, S. 2002Cadmium stress induces production of thiol compounds and transcripts for enzymes involved in sulfur assimilation pathways in ArabidopsisJ. Plant Physiol.159445448CrossRefGoogle Scholar
  20. Hartley-Whitaker, J., Ainsworth, G., Vooijs, R., Bookum, W.T., Schat, H., Meharg, A.A. 2001Phytochelatins are involved in differential arsenate tolerance in Holcus lanatusPlant Physiol.126299306CrossRefPubMedGoogle Scholar
  21. Heath, R.L., Packer, L. 1968Photoperoxidation in isolated chloroplast. I. Kinetics and stoichiometry of fatty acid peroxidationArch. Biochem. Biophys.125189198CrossRefPubMedGoogle Scholar
  22. Heiss, S., Wachter, A., Bogs, J., Cobbett, C., Rausch, T. 2003Phytochelatin synthase (PCS) protein is induced in Brassica juncea leaves after prolonged Cd exposureJ. Exp. Bot.5418331839CrossRefPubMedGoogle Scholar
  23. Howden, R., Andresen, C.R. Golsbrough P.B., Cobbett, C.S. 1995aA cadmium-sensitiveglutathione-deficient mutant of Arabidopsis thalianaPlant Physiol.10710671073CrossRefGoogle Scholar
  24. Howden, R., Andresen, C.R., Golsbrough, P.B., Cobbett, C.S. 1995bA cadmium-sensitivecad1 mutant of Arabidopsis thaliana are phytochelatin deficientPlant Physiol.10710591066CrossRefGoogle Scholar
  25. Kaiser, E., Colescott, R.L., Bossinger, C.D., Cook, P.J. 1970Colour test for detection of free amino groups in the solid phase synthesis of peptidesAnal. Biochem.34595598CrossRefPubMedGoogle Scholar
  26. Küpper, H., Mijovilovich, A., Meyer-Klaucke, W., Kroneck, P.M.H. 2004Tissue- and age-dependent differences in the complexation of cadmium and zinc in the cadmium/zinc hyperaccumulator Thlaspi caerulescens (Ganges Ecotype) revealed by X-ray absorption spectroscopyPlant Physiol.134748757CrossRefPubMedGoogle Scholar
  27. Landberg, T., Greger, M. 2002Differences in oxidative stress in heavy metal resistant and sensitive clones fo Salix viminalisJ. Plant Physiol.1596975CrossRefGoogle Scholar
  28. Lee, S., Moon, J.S., Ko, T.S., Petros, D., Goldsbrough, P.B., Korban, S.S. 2003Overexpression of Arabidopsis phytochelatin synthase paradoxically leads to hypersensitivity to cadmium stressPlant Physiol.131656663CrossRefPubMedGoogle Scholar
  29. Levine, R.L., Garland, D., Oliver, C.N., Amici, A., Climent, I., Lenz, A., Ahn, B., Shaltiel, S., Stadtman, E.R. 1990Determination of carbonyl content in oxidatively modified proteinsMethod. Enzymol.106464478Google Scholar
  30. Maier, E.A., Matthews, R.D., McDowell, J.A., Walden, R.R., Ahner, B.A. 2003Environmental cadmium levels increase phytochelatin and glutathione in lettuce grown in a chelator-buffered nutrient solutionJ. Environ. Qual.3213561364PubMedGoogle Scholar
  31. Martin, M.N., Slovin, J.P. 2000Purified g-glutamyltranspeptidases from tomato exhibit affinity for glutathione and glutathione S-conjugatesPlant Physiol.12214171426CrossRefPubMedGoogle Scholar
  32. May, M.J., Vernoux, T., Leaver, C., Van Montagu, M., Inze, D. 1998Glutathione homeostasis in plants: implications for environmental sensing and plant developmentJ. Exp. Bot.49649667CrossRefGoogle Scholar
  33. Murashige, T., Skoog, F. 1962A revised medium for rapid growth and bioassays with tobacco tissue culturesPhysiol. Plant.15473497Google Scholar
  34. Noctor, G., Foyer, C.H. 1998Ascorbate and glutathione: keeping active oxygen under controlAnnu. Rev. Plant Physiol. Plant Mol. Biol.49249279CrossRefPubMedGoogle Scholar
  35. Pietrini, F., Ianelli, M.A., Pasqualini, S., Massacci, A. 2003Interaction of cadmium with glutathione and photosynthesis in developing leaves and chloroplast of Phragmites autralis (Cav.) Trin. ex SteudelPlant Physiol.133829837CrossRefPubMedGoogle Scholar
  36. Pilon-Smits, E.A.H., Zhu, Y.L., Sears, T., Terry, N. 2000Overexpression of glutathione reductase in Brassica juncea: effects on cadmium accumulation and tolerancePhysiol. Plant.110455460CrossRefGoogle Scholar
  37. Prasad, M.N.V. 2004Heavy Metal Stress in Plant: From Biomolecules to Ecosystems. 2nd ednSpringer-VerlagHeidelberg, Narosa, New DelhiGoogle Scholar
  38. Ric De Vos, C.H., Vonk, M.J., Vooijs, R., Schat, H. 1992Glutathione depletion due to copper-induced phytochelatin synthesis causes oxidative stress in Silene cucubalusPlant Physiol.98853858Google Scholar
  39. Romero-Puertas, M.C., Rodriguez-Serrano, M., Corpas, F.J., Gomez, M., Del Rio, L.A., Sandalio, L.M.. 2004Cadmium-induced subcellular accumulation of O2.− and H2O2 in pea leavesPlant Cell Environ.2711221134CrossRefGoogle Scholar
  40. Salt, D.E., Blaylock, M., Kumar, N.P.B.A., Dushenkov, V., Ensley, B.D., Chet, Y., Raskin, I. 1995Phytoremediation: a novel strategy for the removal of toxic metals from the environment using plantsBiotechnology13468474CrossRefPubMedGoogle Scholar
  41. Sanitàdi Toppi, L., Gabbrielli, R. 1999Response to cadmium in higher plantsEnviron. Exp. Bot.41105130CrossRefGoogle Scholar
  42. Scheller, H.V., Huang, B., Hatch, E., Goldsbrough, P.B. 1987Phytochelatin synthesis and glutathione levels in response to heavy metals in tomato cellsPlant Physiol.8510311035Google Scholar
  43. Schmöger, M.E.V., Oven, M., Grill, E. 2000Detoxification of arsenic by phytochelatins in plantsPlant Physiol.122793801CrossRefPubMedGoogle Scholar
  44. Schröder, P., Fischer, C., Debus, R., Wenzel, A. 2003Reaction of detoxification mechanisms in suspension cultured spruce cells (Picea abies L. KARST.) to heavy metals in pure mixture and soil eluatesEnviron. Sci. Pollut. Res.10225234Google Scholar
  45. Souza, J.F., Rauser, W.E. 2003Maize and radish sequester excess cadmium and zinc in different waysPlant Sci.16510091022CrossRefGoogle Scholar
  46. Tsuji, N., Hirayanagi, N., Okada, M., Miyasaka, H., Hirata, K., Zenk, M.H., Miyamoto, K. 2002Enhancement of tolerance to heavy metals and oxidative stress in Dunaliella tertiolecta by Zn-induced phytochelatin synthesisBiochem. Biophys. Res. Commun.293653659CrossRefPubMedGoogle Scholar
  47. Tukendorf, A., Rauser, W.E. 1990Changes in glutathione and phytochelatins in roots of maize seedling exposed to cadmiumPlant Sci.70155166CrossRefGoogle Scholar
  48. Vatamaniuk, O.K., Mari, S., Lu, Y.P., Rea, P.A. 1999AtPCS1, a phytochelatin synthase from Arabidopsis: isolation and in vitro reconstitutationProc. Natl. Acad. Sci. USA9671107115CrossRefPubMedGoogle Scholar
  49. Vögeli-Lange, R., Wagner, G.J. 1996Relationship between cadmiumglutathione and cadmium-binding peptides (phytochelatins) in leaves of intact tobacco seedlingsPlant Sci.1141118CrossRefGoogle Scholar
  50. Yin, L., Zhou, Y., Fan, X., Lu, R. 2002Induction of phytochelatins in Lemna aequinoctialis in response to cadmium exposureBull. Environ. Contam. Toxicol.68561568CrossRefPubMedGoogle Scholar
  51. Zhu, H., Bannenberg, G.L., Moldéus, P., Shertzer, H.G. 1994Oxidation pathways for the intracellular probe 2′,7′-dichlorofluorescinArch. Toxicol.68582587CrossRefPubMedGoogle Scholar

Copyright information

© Springer 2005

Authors and Affiliations

  • Susana M. Gallego
    • 1
  • Marcelo J. Kogan
    • 1
  • Claudia E. Azpilicueta
    • 1
  • Clara Peña
    • 1
  • María L. Tomaro
    • 1
  1. 1.Departamento de Química Biológica, Facultad de Farmacia y BioquímicaUniversidad de Buenos AiresBuenos AiresArgentina

Personalised recommendations