Plant Growth Regulation

, Volume 46, Issue 3, pp 241–251 | Cite as

Effects of Hydroponic Solution EC, Substrates, PPF and Nutrient Scheduling on Growth and Photosynthetic Competence During Acclimatization of Micropropagated Spathiphyllum plantlets

  • Y.H. Dewir
  • D. Chakrabarty
  • M.B. Ali
  • E.J. Hahn
  • K.Y. PaekEmail author


In vitro regenerated shoots of Spathiphyllum from bioreactor were hydroponically cultured for 30 days. The response of plant growth and photosynthesis to different substrates, photosynthetic photon flux (PPF), nutrient scheduling and electrical conductivity (EC) of hydroponic solution were studied. The best plant growth response was observed in perlite based substrates with moderate PFF (70–100μmol m−2 s−1). Highest fresh weight, dry weight, shoot length, root length, root number and photosynthetic characteristics (chlorophyll, carotenoids and Fv/Fm) was observed in continuous immersion system. Plant growth responses, photosynthetic rate, stomatal conductance and transpiration rate were also found to be affected by EC levels. The optimum EC of a balanced nutrient solution was recorded as 1.2 dS  m−1. Photosynthetic activity was also characterized in terms of photochemical efficiency using measurements of chlorophyll fluorescence. Fv/Fm (it is a measure of the intrinsic or maximum efficiency of PSII i.e. the quantum efficiency if all PSII centers were open) also decreased significantly in plants grown under higher EC level; a decrease in this parameter indicates down regulation of photosynthesis or photoinhibition. Antioxidant defense enzymes such as catalase (CAT), ascorbate peroxidase (APX), peroxidase (POD), glutathione reductase (GR) and monodehydroascorbate reductase (MDHAR) significantly elevated in the leaves and roots of plantlets at higher EC levels. This increase could reflect a defense response to the cellular damage provoked by higher EC levels in the nutrient solution.


Antioxidant enzymes Electrical conductivity Fv/Fm Hydroponics Photosynthesis 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Aebi, H. 1984CatalasesBergmeyer, H.U. eds. Methods of Enzymatic Analysis, Vol. 2Academic PressNew York673684Google Scholar
  2. Barata, P.M., Chapparro, A., Chabregas, S.M., Gonzalez, R., Labate, C.A., Azevedo, R.A., Sarath, G., Lea, P.J., Silva-Filho, M.C. 2000Targeting of the soybean leghaemoglobin to tobacco chloroplast: effects on aerobic metabolism in transgenic plantsPlant Sci.155193202CrossRefPubMedGoogle Scholar
  3. Bates, L.S., Waldren, R.P., Teare, I.D. 1973Rapid determination of free proline for water stress studiesPlant soil39205207CrossRefGoogle Scholar
  4. Blokhina, O., Virolainen, E., Fagerstedt, K.V. 2003Antioxidants, oxidative damage and oxygen deprivation stress: a reviewAnn. Bot.91179194CrossRefPubMedGoogle Scholar
  5. Bradford, M.M. 1976A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye bindingAnal. Biochem.72248254PubMedGoogle Scholar
  6. Chen, G.X., Asada, K. 1989Ascorbate peroxidase in tea leaves: occurrence of two isozymes and the differences in their enzymatic and molecular propertiesPlant Cell Physiol.30987998Google Scholar
  7. DeBoodt, M., Verdonck, O. 1972The physical properties of the substrates in horticultureActa Hort.263744Google Scholar
  8. Doulis, A.G., Debian, N., Kingston-smith, A.H., Foyer, C.H. 1997Differential localization of antioxidants in maizePlant Physiol.11410311037PubMedGoogle Scholar
  9. Droter, A., Phclps, P., Fall, R. 1985Evidence for glutathione peroxidase activities in cultured plant cellsPlant Sci.423540CrossRefGoogle Scholar
  10. Gossett, D.R., Millhollon, E.P., Lucas, M.C., Banks, S.W., Marney, M.M. 1994The effects of NaCl on antioxidant enzyme activities in callus tissue of salt-tolerant and salt-sensitive cotton cultivars (Gossipium hirsutum L.)Plant Cell Rep.13498503CrossRefGoogle Scholar
  11. Hahn, E.J., Bae, J.H., Lee, Y.B. 2000Growth and photosynthetic characterstics of chrysanthemum plantlets as affected by pH and EC of the nutrient solution in microponic cultureJ. Kor. Soc. Hort. Sci.411215Google Scholar
  12. Hall, A.E. 2001Crop Responses to EnvironmentsCRC Press LLCUSAGoogle Scholar
  13. Hayashi, F., Ichino, T., Osanai, M., Wada, K. 2000Oscillation and regulation of proline content of P5CS and ProDH gene expressions in the light/dark cycles in Arabodopsis thaliana LPlant Cell Physiol.4110961101CrossRefPubMedGoogle Scholar
  14. Hernandez, J.A., Jimenez, A., Mullineaux, P., Sevilla, F. 2000Tolerance of pea (Pisum sativum L.) to long-term salt stress is associated with induction of antioxidant defencesPlant Cell Environ.23853862CrossRefGoogle Scholar
  15. Horemans, N., Foyer, C.H., Potters, G., Asard, H. 2000Ascorbate function and associated transport systems in plantsPlant Physiol. Biochem.38531540CrossRefGoogle Scholar
  16. Hossain, M.A., Nakano, Y., Asada, K. 1984Monodehydroascorbate reductase in spinach chloroplasts and its participation in regeneration of ascorbate for scavenging hydrogen peroxidePlant Cell Physiol.25385395Google Scholar
  17. Kozai, T. 1991Micropropagation under photoautotrophic conditionsDebergh, P.C.Zimmerman, R.H. eds. Micropropagation Technology and ApplicationKluwerDordrecht447469Google Scholar
  18. Kozai, T., Sekimoto, K. 1988Effects of the number of air exchanges per hour of the closed vessel and the photosynthetic photon flux on the carbon dioxide concentration inside the vessel and the growth of strawberry plantlets in vitroEnviron. Control Biol.262129Google Scholar
  19. Lambers, H., Chapin, F.S., Pons, T.L. 1998Plant Physiological EcologySpringer-VerlagNew York540Google Scholar
  20. Lawlor, D.W. 2002Limitation to photosynthesis in water-stressed leaves: stomata vs. metabolism and the role of ATPAnn. Bot.89871885CrossRefPubMedGoogle Scholar
  21. Lawlor, D.W., Cornic, G. 2002Photosynthetic carbon assimilation and associated metabolism in relation to water deficits in higher plantsPlant Cell Environ.25275294CrossRefPubMedGoogle Scholar
  22. Lee, N., Wetzstein, Y., Sommer, H.E. 1985Effect of quantum flux density on photosynthesis and chloroplast ultrastructure intissue-cultured plantlets and seedling of Liquidambar styraciflua L. towards improved acclimatization and field survivalPlant Physiol.78637641Google Scholar
  23. Lichtenthaler, H.K. 1987Chlorophyll and carotenoides: pigments of photosynthetic biomembranesMethods Enzymol.148350382Google Scholar
  24. Meneguzzo, S., Navari-Izzo, F., Izzo, R. 1999Antioxidative responses of shoots and roots of wheat to increasing NaCl concentrationsJ. Plant Physiol.155274280Google Scholar
  25. Meneguzzo, S., Sgherri, C.L.M., Navari-Izzo, F., Izzo, R. 1998Stromal and thylakoid-bound ascorbate peroxidases in NaCl-treated wheatPhysiol. Plant.104735740CrossRefGoogle Scholar
  26. Munns, R., Schachtman, D.P., Condon, A.G. 1995The significance of a two-phase growth response to salinity in wheat and barleyAust. J. Plant Physiol.22561569Google Scholar
  27. Murashige, T., Skoog, F. 1962A revised medium for rapid growth and bioassays with tobacco tissue culturesPhysiol. Plant.15473497Google Scholar
  28. Nandwal, A.S., Godara, M., Sheokand, A., Kamboj, D.V., Kundu, B.S., Kuhad, M.S., Kumar, B., Sharma, S.K. 2000Salinity induced changes in plant water status, nodule functioning and ionic distribution in phenotypically differing genotypes of Vigna radiata LJ. Plant Physiol.156350359Google Scholar
  29. Nilsen, E.T., Orcutt, D.M. 1996The Physiology of Plants Under DeficitAbiotic Factors, WilleyUSA689Google Scholar
  30. Peltzer, D., Dreyer, E., Polle, A. 2002Differential temperature dependencies of antioxidative enzymes in two contrasting species: Fagus sylvaticaColeus blumeiPlant Physiol. Biochem.40141150CrossRefGoogle Scholar
  31. Piao, X.C., Chakrabarty, D., Hahn, E.J., Paek, K.Y. 2004Growth and photosynthetic characterstics of potato plantlets as affected by pH and EC of the nutrient solution in hydroponic systemJ. Am. Soc. Hortic. Sc.129100105Google Scholar
  32. Pospísilová, J., Catský, J., Sesták, Z. 1997Photosynthesis in plants cultivated in vitroPessarakli, M. eds. Handbook of PhotosynthesisMarcel DekkerNew York525540Google Scholar
  33. Preece, J.E., Sutter, E.J. 1991Acclimatization of micropropagated plants to the greenhouse and fieldDebergh, P.C.Zimmerman, R.H. eds. MicropropagationTechnology and Application, KluwerDordrecht7193Google Scholar
  34. Pütter, J. 1974PeroxidasesBergmeyer, H.U. eds. Methods of Enzymatic Analysis, Vol. 2Academic PressNew York685690Google Scholar
  35. Sakamoto, A., Murata, N. 2002The role of glycine betaine in the protection of plants from stress: clues from transgenic plantsPlant Cell Environ.25163171CrossRefPubMedGoogle Scholar
  36. Schwarz, M. 1985NutrientsMcNeal, B.L.Tardieu, F.Van keulen, H.Van Vleck, D. eds. Soilless Culture ManagementSpringer-VerlagBerlin732Google Scholar
  37. Silveira, J.A.G., Melo, A.R.B., Viegas, R.A., Oliveira, J.T.A. 2001Salinity-induced effects on nitrogen assimilation related to growth in cowpea plantsEnviron. Exp. Bot.46171179CrossRefGoogle Scholar
  38. Weatherley, P.E. 1950Studies in the water relations of the cotton plant. 1. the field measurement of water deficit in leavesNew phytol.498197Google Scholar
  39. Wu, R.Z., Chakrabarty, D., Hahn, E.J., Paek, K.Y. 2005Growth of Doritaenopsis in peat-substitute growing mediaJ. Kor. Soc. Hort. Sci.467681Google Scholar

Copyright information

© Springer 2005

Authors and Affiliations

  • Y.H. Dewir
    • 1
    • 2
  • D. Chakrabarty
    • 1
  • M.B. Ali
    • 1
  • E.J. Hahn
    • 1
  • K.Y. Paek
    • 1
    Email author
  1. 1.Research Center for The Development of Advanced Horticultural TechnologyChungbuk National UniversityCheong-juKorea
  2. 2.Department of Horticulture, Faculty of AgricultureTanta UniversityKafr El-SheikhEgypt

Personalised recommendations