Plant Growth Regulation

, Volume 46, Issue 3, pp 209–221 | Cite as

Drought Induces Oxidative Stress and Enhances the Activities of Antioxidant Enzymes in Growing Rice Seedlings

  • Pallavi Sharma
  • Rama Shanker DubeyEmail author


When rice seedlings grown for 10 and 20 days were subjected to in vitro drought stress of −0.5 and −2.0 MPa for 24 h, an increase in the concentration of superoxide anion (O2.−), increased level of lipid peroxidation and a decrease in the concentration of total soluble protein and thiols was observed in stressed seedlings compared to controls. The concentration of H2O2 as well as ascorbic acid declined with imposition of drought stress, however glutathione (GSH) concentration declined only under severe drought stress. The activities of total superoxide dismutases (SODs) as well as ascorbate peroxidase (APX) showed consistent increases with increasing levels of drought stress, however catalase activity declined. Mild drought stressed plants had higher guaiacol peroxidase (GPX) and chloroplastic ascorbate peroxidase (c-APX) activity than control grown plants but the activity declined at the higher level of drought stress. The activities of enzymes involved in regeneration of ascorbate i.e. monodehydroascorbate reductase (MDHAR), dehydroascorbate reductase (DHAR) and glutathione reductase (GR) were higher in drought stressed plants compared to controls. Results suggest that drought stress induces oxidative stress in rice plants and that besides SOD, the enzymes of ascorbate-glutathione cycle, which have not been studied in detail earlier under stressful conditions, appear to function as important component of antioxidative defense system under drought stress.


Antioxidative enzymes Drought stress Lipid peroxidation Oryza sativa Oxidative stress Superoxide 







chloroplastic ascorbate peroxidase




dehydroascorbate reductase


guaiacol peroxidase


glutathione reductase




oxidized glutathione


monodehydroascorbate reductase


superoxide dismutase


thiobarbituric acid reactive substances


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Aebi, H.E. 1983CatalaseBergmeyer, H.U. eds. Methods of Enzymatic AnalysisVerlag ChemieWeinhern273286Google Scholar
  2. Asada, K. 1994Production and action of active oxygen species in photosynthetic tissuesFoyer, C.Mullineaux, P.M. eds. Causes of Photooxidative Stress and Amelioration of Defense Systems in PlantsCRC PressBoca Raton, London77100Google Scholar
  3. Atal, N., Saradhi, P.P., Mohanty, P. 1991Inhibition of the chloroplast photochemical reactions by treatment of wheat seedlings with low concentrations of cadmium: analysis of electron transport activities and changes in fluorescence yieldPlant Cell Physiol.32943951Google Scholar
  4. Boo, Y.C., Jung, J. 1999Water deficit-induced oxidative stress and antioxidative defenses in rice plantsJ. Plant Physiol.155255261Google Scholar
  5. Boominathan, R., Doran, P.M. 2002Ni- induced oxidative stress in roots of the Ni hyper accumulatorAlyssum bertoloniiNew Phytol.156205215CrossRefGoogle Scholar
  6. Bradford, M.M. 1976A rapid and sensitive method for quantitation of microgram quantities of protein utilizing the principle of protein-dye bindingAnalytical Biochem.72248254Google Scholar
  7. Dalton, D.A. 1995Antioxidant defenses of plant and fungiAhmad, S. eds. Oxidative Stress and Antioxidant Defenses in BiologyChapman and HallNew York298335Google Scholar
  8. Dat, J.F., Lopez-Delgado, H., Foyer, C.H., Scott, I.M. 1998Parallel changes in H2O2 and catalase during thermotolerance induced by salicylic acid or heat acclimation in mustard seedlingsPlant Physiol.11613511357CrossRefPubMedGoogle Scholar
  9. Davenport, S.B., Gallego, S.M., Benavides, M.P., Tomaro, M.L. 2003Behaviour of antioxidant defense system in the adaptive response to salt stress in helianthus annus L. cellsPlant Growth Regul.408188CrossRefGoogle Scholar
  10. Dekok, L.J., Kuiper, P.J.C. 1986Effect of short term dark incubation with chloride and selenate on the glutathione content of spinach leaf discsPhysiol. Plant.68477482Google Scholar
  11. del Rio, L.A., Pastori, , Sandalio, G.M., J.M., , Hernandez, J.A. 1998The activated oxygen role of peroxisome in senescencePlant Physiol.11611951200CrossRefPubMedGoogle Scholar
  12. Doulis, A.G., Debian, N., Kingston-Smith, A.H., Foyer, C.H. 1997Differential localization of antioxidants in maize leavesPlant Physiol.1161315Google Scholar
  13. Dubey, R.S., Pessarakli, M. 2002Physiological mechanisms of nitrogen absorption and assimilation in plants under stressful conditionsPessarakli, M. eds. Handbook of Plant and Crop PhysiologyMarcel DekkerNew York637655Google Scholar
  14. Egley, G.H., Paul, R.N., Vaughn, K.C., Duke, S.O. 1983Role of peroxidase in the development of water impermeable seed coats in Sida spinosa LPlanta157224232CrossRefGoogle Scholar
  15. Foyer, C.H., Halliwell, B. 1976The presence of glutathione and glutathione reductase in chloroplasts: a proposed role in ascorbic acid metabolismPlanta1332125CrossRefGoogle Scholar
  16. Foyer, C.H. 1993Ascorbic acidAlscher, R.G.Hess, J.L. eds. Antioxidants in Higher PlantsCRC PressBoca Raton3158Google Scholar
  17. Giannopolitis, C.N., Ries, S.K. 1972Superoxide dismutase. I. Occurrence in higher plantsPlant Physiol.59309314Google Scholar
  18. Griffith, O. 1980Determination of glutathione and glutathione disulphide using glutathione reductase and 2-vinyl pyridineAnalytical Biochem.106207212CrossRefGoogle Scholar
  19. Halliwell, B., Gutteridge, J.M.C. 1999Free Radicals in Biology and MedicineOxford University PressUKGoogle Scholar
  20. Heath, R.L., Packer, L. 1968Photoperoxidation in isolated chloroplasts. I. Kinetics and stoichiometry of fatty acid peroxidationArch. Biochem. Biophys.125189198CrossRefPubMedGoogle Scholar
  21. Hertwig, B., Streb, P., Feierabend, J. 1992Light dependency of catalase synthesis and degradation in leaves and the influence of interfering stress conditionsPlant Physiol.10015471553Google Scholar
  22. Hossain, M.A., Nakano, Y., Asada, K. 1984Monodehydroascorbate reductase in spinach chloroplasts and it's paticipation in regeneration of ascorbate for scavenging hydrogen peroxidePlant Cell Physiol.25385395Google Scholar
  23. Jana, S., Chaudhuri, A. 1981Glycolate metabolism of three submerged aquatic angiosperms during agingAquat. Botan.12345354CrossRefGoogle Scholar
  24. Law, M.Y., Charles, S.A., Halliwell, B. 1983Glutathione and ascorbic acid in spinach (Spinacea oleracea) chloroplasts. The effect of hydrogen peroxide and of paraquatBiochem. J.210899903PubMedGoogle Scholar
  25. Madhusudhan, R., Ishikawa, T., Sawa, Y., Shiqeoka, S., Shibata, H. 2003Characterization of an ascorbate peroxidase in plastids of tobacco BY-2 cellsPhysiol. Plant.117550557CrossRefPubMedGoogle Scholar
  26. Mallick, N., Mohn, F.H. 2000Reactive oxygen species: response of algal cellsJournal of Plant Physiol.157183193Google Scholar
  27. Mckersie, B.D., Lesham, Y.Y. 1994Stress and Stress Coping in Cultivated PlantsKluwer Academic PublishersDordrechtGoogle Scholar
  28. Mishra, H.P., Fridovich, I. 1972The role of superoxide anion in auto-oxidation of the epinephrine and sample assay for SODJ. Biol. Chem.24731703175PubMedGoogle Scholar
  29. Moran, J.F., Becana, M., Iturbe-Ormaetxe, I., Frechilla, S., Klucas, R.V., Aparicio-Tejo, P. 1994Drought induces oxidative stress in pea plantsPlanta194346352CrossRefGoogle Scholar
  30. Nakano, Y., Asada, K. 1987Purification of ascorbate peroxidase in spinach chloroplasts; it's inactivation in ascorbate depleted medium and reactivation by monodehydro ascorbate radicalPlant Cell Physiol.28131140Google Scholar
  31. Noctor, G., Foyer, C.H. 1998Ascorbate and glutathione: Keeping active oxygen under controlAnn. Rev. Plant Physiol. Plant Mol. Biol.49249279CrossRefGoogle Scholar
  32. Paleg, L.G., Stewart, G.R., Bradbeer, J.W. 1984Proline and glycine betaine influence on protein solvationPlant Physiol.75974978Google Scholar
  33. Radotic, K., Ducic, T., Mutavdzic, D. 2000Changes in peroxidase activity and isozymes in spruce needles after exposure to different concentrations of cadmiumEnviron. Exp. Bot.44105113CrossRefPubMedGoogle Scholar
  34. Rennenberg, G.H. 1982Glutathione metabolism and possible roles in higher plantsPhytochemistry2127712781CrossRefGoogle Scholar
  35. Richharia, A., Shah, K., Dubey, R.S. 1997Nitrate reductase from rice seedlings: partial purification, characterization and effects of in situ and in vitro NaCl salinityJ. Plant Physiol.151316322Google Scholar
  36. Ruegsegger, A., Schmutz, D., Brunold, C. 1990Regulation of glutathione synthesis by cadmium in Pisum sativum LPlant Physiol.9315791584Google Scholar
  37. Sgherri, C.L.M., Pinzino, C., Navari-Izzo, F. 1996Sunflowers seedlings subjected to stress by water deficit: changes in O2.− production related to the composition of thylakoid membranesPhysiol. Plant.96446452CrossRefGoogle Scholar
  38. Smirnoff, N. 1993The role of active oxygen in the response of plants to water deficit and desiccationNew Phytol.1252758Google Scholar
  39. Ushimaru, T., Ogawa, K., Ishida, N., Shibasaka, N., Kanematsu, S., Asada, K., Tsuji, H. 1995Changes in organelle superoxide dismutase isozymes during air adaptation of submerged rice seedlings: differential behaviour of isozymes in plastids and mitochondriaPlanta112606613Google Scholar
  40. Yoshimura, K., Yabuta, Y., Ishikawa, T., Sgigeoka, S. 2000Expression of spinach ascorbate peroxidase isozymes in response to oxidative stressPlant Physiol.123223234CrossRefPubMedGoogle Scholar
  41. Zhang, J., Cui, S., LI, , J., , Kirkham, M.B. 1995Protoplasmic factors, antioxidant responses, and chilling resistance in maizePlant Physiol. Biochem.33567575Google Scholar

Copyright information

© Springer 2005

Authors and Affiliations

  1. 1.Department of Biochemistry, Faculty of ScienceBanaras Hindu UniversityVaranasiIndia

Personalised recommendations