Advertisement

Plant Growth Regulation

, Volume 44, Issue 3, pp 231–241 | Cite as

Co-regulation Of ear growth and internode elongation in corn

  • Nanfei Xu
  • Kent York
  • Philip Miller
  • Nordine Cheikh
Article

Abstract

Ear is the harvest part of corn (Zea mays L.) and we are interested in studying its growth and development in our effort in corn yield improvement. In our current study, we examined the relationship between ear growth and internode characteristics using different approaches. Correlations between stem growth rate and number of ears per plant (prolificacy) were assessed among several genotypes. Internode elongation of 2 genotypes was modified by plant hormones and by population density manipulations. Among the 7 genotypes examined that have different prolificacy levels, there was a general correlation of slower stem elongation at middle growth stages and larger ear number. When the internode elongation was enhanced by application of gibberellic acid (GA), ear growth was suppressed; and when a GA synthesis inhibitor uniconazole was applied at early stages, internode length was reduced and ear growth was promoted in terms of both ear size and visible ear number at silking stage. Higher population density caused longer internodes and fewer ears per plant and the effect of lower density was the opposite. Our results suggested that internode elongation in the middle section of corn plants was linked to suppression of ear development in corn.

Keywords

Density Ear growth and development GA Internode elongation Uniconazole Zea mays 

Heading

GA

gibberellic acid

UCZ

uniconazole

UCZ

uniconazole

NCGA

National Corn Growers Association

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Abdel-Gawad, M.H., El-Batal, M.A. 1996Response of maize productivity to the growth retardant “uniconazole” under high nitrogen fertilization and plant densityAnn. Agri. Sci. Moshtohor34429440Google Scholar
  2. Bommineni, V.R., Greyson, R.I. 1990Effect of gibberellic acid and indole-3-acetic acid on growth and differentiation of cultured ear inflorescence of maize (Zea mays L.)Plant Sci.68239247Google Scholar
  3. Cherry, J., Lund, H.A., Earley, E. 1960Effect of gibberellic acid on growth and yield of cornAgron J.52167171CrossRefGoogle Scholar
  4. de Leon, N., Coors, J.G. 2002Twenty-four cycles of mass selection for prolificacy in the golden glow maize populationCrop Sci.42325333CrossRefGoogle Scholar
  5. Earley E.B., Lyons J.C., Inselberg E., Maier R.H. and Leng E.R. 1974. Earshoot development of Midwest dent corn (Zea mays L.). Bulletin 747, Agricultural Experiment Station. College of AgricultureUniversity of Illinois at Urbana-Champaign.Google Scholar
  6. Fujioka, S. 1988The dominant non-gibberellin-responding dwarf mutant (D8) of maize accumulates native gibberellinsProc. Natl. Acad. Sci. USA8590319035PubMedGoogle Scholar
  7. Hansen, D.J., Bellman, S.K., Sacher, R.M. 1976Gibberellic acid-controlled sex expression of corn tasselsCrop Sci.16371374CrossRefGoogle Scholar
  8. Harberd, N.P., Freeling, M. 1989Genetics of dominant gibberellin-insensitive dwarfism in maizeGenetics121827838PubMedGoogle Scholar
  9. J. MacMillan,B.O.Phinney,1987.Biochemical genetics and the regulation of stem elongation by gibberellins D.J.Cosgrove,D.P.Knievel,Physiology of cell expansion during plant growth: proceedings of the second annual Penn State Symposium in Plant PhysiologyThe Pennsylvania State University, 156--171Google Scholar
  10. Maddonni, G.A., Otegui, M.E., Cirilo, A.G. 2001Plant population density, row spacing and hybrid effects on maize canopy architecture and light attenuationField Crop Res.71183193Google Scholar
  11. Modarres, A.M., Hamilton, R.I., Dijak, M., Dwyer, L.M., Stewart, D.W., Mather, D.E., Smith, D.L. 1998Plant population density effects on maize inbred lines grown in short-season environmentsCrop Sci.38104108CrossRefGoogle Scholar
  12. NCGA (National Corn Growers Association), World of Corn 2001. http://www.ncga.com/03world/main/world_corn_prod_2000.html.Google Scholar
  13. Peng, J., Richards, D.E., Hartley, N.M., Murphy, G.P., Devos, K.M., Flintham, J.E., Beales, J., Fish, L.J., Worland, A.J., Pelica, F., Sudhakar, D., Christou1, P., Snape, J.W., Gale, M.D., Harberd, N.P. 1999‘Green revolution genes encode mutant gibberellin response modulatorsNature400256261CrossRefPubMedGoogle Scholar
  14. Phinney, B.O. 1961Dwarfing genes in Zea maystheir relation to the gibberellinsPlant Growth Regulation: Fourth International Conference on Plant Growth RegulationIowa State University PressAmes, IA489501Google Scholar
  15. Pinthus, M.J., Belcher, A.R. 1994Maize topmost axillary shoot interference with lower ear development in vitro Crop Sci.11458461CrossRefGoogle Scholar
  16. Ritchie S.W. and Hanway J.J. 1982. How a Corn Plant Develops. Special Report – Cooperative Extension ServiceAgriculture and Home Economics Experiment Station. Iowa State University. Also available at http://maize.agron.iastate.edu/corngrows.html. Google Scholar
  17. Rood, S.B., Pharis, R.P. 1980Changes of endogenous gibberellin-like substance with sex reversal of the apical inflorescence of cornPlant Physiol.66793796PubMedGoogle Scholar
  18. Sarquis, J.I., Gonzalez, H., Dunlap, J.R. 1998Yield response of two cycles of selection from a semiprolific early maize (Zea mays L.) population to plant density, sucrose infusion and pollination controlField Crop Res.55109116Google Scholar
  19. Sasaki, A., Ashikari, M., Ueguchi-Tanaka, M., Itoh, H., Nishimura, A., Swapan, D., Ishiyama, K., Saito, T., Kobayashi, M., Khush, G.S., Kitano, H., Matsuoka, M. 2002Green revolution: a mutant gibberellin-synthesis gene in riceNature416701702CrossRefPubMedGoogle Scholar
  20. Sass, J.E., Loeffel, F.A. 1959Development of axillary buds of maize in relation to barrennessAgron. J.51484486CrossRefGoogle Scholar
  21. Sharman, B.C. 1942Developmental anatomy of the shoot of Zea mays LAnn. Bot.6245282Google Scholar
  22. Siemer, E.G., Leng, E.R., Bonnett, O.T. 1969Timing and correlation of major development events in maizeZea mays LAgron. J.611417CrossRefGoogle Scholar
  23. Sorrells, M.E., Harris, R.E., Lonnquist, J.H. 1978Response of prolific and nonprolific maize to growth-regulating chemicalsCrop Sci.18783787CrossRefGoogle Scholar
  24. Wang, H. 1999Study on techniques for chemical regulation at different growth stages in maizeJiangsu Agric. Sci.13234Google Scholar
  25. Wilson, J.H., Allison, J.C.S. 1978Effect of plant population on ear differentiation and growth in maizeAnn. Appl. Biol.90127132Google Scholar
  26. Zhong, H., Srinivasan, C., Sticklen, M.B. 1992In-vitro morphogenesis of corn (Zea mays L.) II. Differentiation of ear and tassel clusters from cultured shoot apices and immature inflorescencesPlanta187490497CrossRefGoogle Scholar
  27. Zhou, X.M., Dutilleul, P., MacKenzie, A.F., Madramootoo, C.A., Smith, D.L. 1997Effects of stem-injected sucrose on grain production, dry matter distribution, and chlorophyll fluorescence of field-grown corn plantsJ. Agron. Crop Sci.1786571CrossRefGoogle Scholar

Copyright information

© Kluwer Academic Publishers 2004

Authors and Affiliations

  • Nanfei Xu
    • 1
    • 5
  • Kent York
    • 1
    • 2
  • Philip Miller
    • 1
    • 3
  • Nordine Cheikh
    • 1
    • 4
  1. 1.Monsanto CompanyChesterfieldUSA
  2. 2.Genetic Therapy, Inc.GaithersburgUSA
  3. 3.Monsanto Mystic ResearchMysticUSA
  4. 4.MonsantoChesterfieldUSA
  5. 5.BASF Plant ScienceUSA

Personalised recommendations