Plant Growth Regulation

, Volume 44, Issue 3, pp 267–275 | Cite as

Peroxidase mediated hydrogen peroxide production in barley roots grown under stress conditions

  • Marta Šimonovičová
  • Jana Huttová
  • Igor Mistrík
  • Beáta Široká
  • Ladislav Tamás


All applied metals (Co, Al, Cu, Cd) and NaCl inhibited barley root growth. No root growth inhibition was caused by drought exposure, in contrast to cold treatment. 0.01 mM H2O2 stimulated root growth and GA application did not affect root growth at all. Other activators and inhibitors of H2O2 production (SHAM, DTT, 10 mM H2O2, 2,4-D) inhibited root growth. Loss of cell viability was most significant after Al treatment, followed by Cd and Cu, but no cell death was induced by Co. Drought led to slight increase in Evans blue uptake, whereas neither NaCl nor cold influenced this parameter. DTT treatment caused slight increase in Evans blue uptake and significant increases were detected after 2,4-D and 10 mM H2O2 treatment, but were not induced by others stressors. Metal exposure increased guaiacol-POD activity, which was correlated with oxidation of NADH and production of H2O2. Exposure to drought caused a minor change in NADH oxidation, but neither H2O2 production nor guaiacol-POD activity was increased. Cold and NaCl application decreased all monitored activities. Increase in NADH oxidation and guaiacol-POD activity was caused by 10 mM H2O2 and 0.01 mM 2,4-D treatment, which also caused enhancement of H2O2 production. Slight inhibition of all activities was caused by 0.01 mM H2O2, GA, DTT; more pronounced inhibition was detected after SHAM treatment. The role of H2O2 production mediated by POD activity in relation to root growth and cell viability under exposure to some abiotic stress factors is discussed.


Abiotic stress Active oxygen species Hordeum vulgare Root growth 



2,4-dichlorophenoxyacetic acid


active oxygen species




gibberellic acid




salicylhydroxamic acid


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Askerlund, P., Larsson, C., Widell, S., Moller, I.M. 1987NAD(P)H oxidase and peroxidase activities in purified plasma membranes from cauliflower inflorescencesPhysiol. Plant.71919Google Scholar
  2. Baker, C.J., Mock, N.M. 1994An improved method for monitoring cell death in cell suspension and leaf disc assays using Evans bluePlant Cell Tissue Organ Cult.39712Google Scholar
  3. Bolwell, G.P., Bindschedler, L.V., Blee, K.A., Butt, V.S., Davies, D.R., Gardner, S.L., Gerrish, C., Minibayeva, F. 2002The apoplastic oxidative burst in response to biotic stress in plants: a three-component systemJ. Exp. Bot.5313671376PubMedGoogle Scholar
  4. Bolwell, G.P., Wojtaszek, P. 1997Mechanisms for the generation of reactive oxygen species in plant defence – a broad perspectivePhysiol Mol. Plant Pathol.51347366Google Scholar
  5. Bradford, M. 1976A rapid and sensitive method for the quantification of microgram quantities of protein utilizing the principle of protein-dye bindingAnal. Biochem.72248254CrossRefPubMedGoogle Scholar
  6. Dat, J., Vandenabeele, S., Vranová, E., Van Montagu, M., Inzé, D., Van Bresugem, F. 2000Dual action of the active oxygen species during plant stress responseCell Mol. Life Sci.57779795PubMedGoogle Scholar
  7. de Marco, A., Roubelakis-Angelakis, K.A. 1996The complexity of enzymatic control of hydrogen peroxide concentration may affect the regeneration potential of plant protoplastPlant Physiol.110137145PubMedGoogle Scholar
  8. Chance, B., Maehly, A.C. 1995Assay of catalases and peroxidasesColowick, S.P.Kaplan, N.O. eds. Methods in Enzymology, Vol. 2Academic PressNew York, NY764775Google Scholar
  9. Ezaki, B., Gardner, R.C., Ezaki, Y., Matsumoto, H. 2000Expression of aluminium-induced genes in transgenic Arabidopsis plants can ameliorate aluminium stress and/or oxidative stressPlant Physiol.122657665PubMedGoogle Scholar
  10. Frahry, G., Schopfer, P. 1998Hydrogen peroxide production by roots and its stimulation by exogenous NADHPhysiol. Plant.103395404Google Scholar
  11. Fry, S.C. 1986Cross-linking of matrix polymers in the growing cells of angiospermsAnnu. Rev. Plant Physiol.37165186Google Scholar
  12. Girotti, A.W. 1985Mechanisms of lipid peroxidationJ. Free Rad. Biol. Med.18795Google Scholar
  13. González, L.F., Rojas, M.C. 1999Role of wall peroxidases in oat growth inhibition by DIMBOAPhytochemistry50931937Google Scholar
  14. Gross, G.G., Janse, C., Elstner, E.F. 1977Involvement of malatemonophenols, and the superoxide radical in hydrogen peroxide formation by isolated cell walls from horseradish (Armoracia lapathifolia Gilib.)Planta136271276Google Scholar
  15. Grossmann, K., Kwiatkowski, J., Tresch, S. 2001Auxin herbicides induce H2O2 overproduction and tissue damage in cleavers (Galium aparine L.)J. Exp. Bot.5218111816PubMedGoogle Scholar
  16. Hegedüs, A., Erdei, S., Horváth, G. 2001Comparative studies of H2O2 detoxifying enzymes in green and greening barleym seedlings under cadmium stressPlant Sci.16010851093PubMedGoogle Scholar
  17. Ishida, A., Ookubo, K., Ono, K. 1987Formation of hydrogen peroxide by NAD(P)H oxidation with isolated cell wall-associated peroxidase from cultured liverwort cells, Marchantia polymorpha LPlant Cell Physiol.28723726Google Scholar
  18. Kärkönen, A., Koutaniemi, S., Mustonen, M., Syrjänen, K., Brunow, G., Kilpeläinen, I., Teeri, T.H., Simola, L.K. 2002Lignification related enzymes in Picea abies suspension culturesPhysiol. Plant.114343353PubMedGoogle Scholar
  19. Katsuhara, M. 1997Apoptosis-like cell death in barley roots under salt stressPlant Cell Physiol.3810911093Google Scholar
  20. Lagrimini, L.M., Gingas, V., Finger, F., Rothstein, S., Liu, T.Y. 1997Characterization of antisense transformed plants deficient in the tobacco anionic peroxidasePlant Physiol.11411871196PubMedGoogle Scholar
  21. Lin, C.C., Kao, C.H. 2001Cell wall peroxidase against ferulic acidlignin, and NaCl-reduced root growth of rice seedlingsJ. Plant Physiol.158667671Google Scholar
  22. Lin, C.C., Kao, C.H. 2002Osmotic stress-induced changes in cell wall peroxidase activity and hydrogen peroxide level in roots of rice seedlingsPlant Growth Regul.37177184Google Scholar
  23. Liszkay, A., Kenk, B., Schopfer, P. 2003Evidence for the involvement of cell wall peroxidase in the generation of hydroxyl radicals mediating extension growthPlanta217658667PubMedGoogle Scholar
  24. Morohashi, Y. 2002Peroxidase activity develops in the micropylar endosperm of tomato seeds prior to radicle protrusionJ. Exp. Bot.5316431650PubMedGoogle Scholar
  25. Neill, S.J., Desikan, R., Clarke, A., Hurst, R.D., Hancock, J.T. 2002Hydrogen peroxide and nitric oxide as signalling molecules in plantsJ. Exp. Bot.5312371247PubMedGoogle Scholar
  26. Richards, K.D., Schott, E.J., Sharma, Y.K., Davis, K.R., Gardner, R.C. 1998Aluminum induces oxidative stress genes in Arabidopsis thaliana Plant Physiol.116409418PubMedGoogle Scholar
  27. Saruyama, H., Tanida, M. 1995Effect of chilling on activated oxygen-scavenging enzymes in low temperature-sensitive and -tolerant cultivars of rice (Oryza sativa L.)Plant Sci.109105113Google Scholar
  28. Shinkle, J.R, Swoap, S.J., Simon, P., Jones, R.L. 1992Cell wall free space of Cucumis hypocotyls contains NAD and a blue light-regulated peroxidase activityPlant Physiol.9813361341CrossRefPubMedGoogle Scholar
  29. Šimonovičová, M., Huttová, J., Mistrík, I., Široká, B., Tamás, L. 2004Root growth inhibition by aluminum is probably caused by cell death due to peroxidase-mediated hydrogen peroxide production.Protoplasma2249198PubMedGoogle Scholar
  30. Tamás, L., Huttová, J., Mistrík, I. 2003Inhibition of Al-induced root elongation and enhancement of Al-induced peroxidase in Al-sensitive and Al-resistant barley cultivars are positively correlatedPlant Soil250193200Google Scholar
  31. Tamás, L., Šimonovičová, M., Huttová, J., Mistrík, I. 2004Aluminium stimulated hydrogen peroxide production of germinating barley seedsEnviron. Exp. Bot.51281288Google Scholar
  32. Tewari, R.K., Kumar, P., Sharma, P.N., Bisht, S.S. 2002Modulation of oxidative stress responsive enzymes by excess cobaltPlant Sci.162381388Google Scholar

Copyright information

© Kluwer Academic Publishers 2004

Authors and Affiliations

  • Marta Šimonovičová
    • 1
  • Jana Huttová
    • 1
  • Igor Mistrík
    • 1
  • Beáta Široká
    • 1
  • Ladislav Tamás
    • 1
  1. 1.Institute of BotanySlovak Academy of SciencesBratislavaSlovak Republic

Personalised recommendations