Plant Growth Regulation

, Volume 44, Issue 1, pp 71–80 | Cite as

Phytochelatin synthesis and cadmium localization in wild type of Arabidopsis thaliana

  • Małgorzata Wójcik
  • Anna Tukiendorf
Article

Abstract

AlthoughArabidopsis thaliana is known as a model plant, in molecular studies, as well as heavy metal tolerance of higher plants, there have been no detailed studies of its cadmium accumulation, tolerance and cellular distribution in a wild type of this species. In hydroponic experiments the wild type of A. thaliana (L.) Heynh cv. Columbia plants grew at cadmium concentrations varying from 5 to 100 μM with phytotoxicity symptoms depending on the concentration and time of application. The concentration of cadmium in roots and shoots increased from 0.28 and 0.08 mg g−1 d.wt at 5 μM Cd treatment after 7 days to 0.82 and 0.85 mg g−1 d.wt at 100 μM Cd treatment after 14 days, respectively. Most of the cadmium (69–88% of its total pool) was found in shoot. Cd application induced the biosynthesis of phytochelatins (PCs) in root and shoot tissues. Studies with buthionine sulfoximine [BSO, specific inhibitor of glutathione (GSH) synthesis] supported the presence of Cd–phytochelatin complexes and their role in Cd detoxification and tolerance in wild type of A. thaliana. Cellular distribution of cadmium was examined using energy-dispersive X-ray micro-analysis. Particularly interesting was the observation of cadmium localized in the root pericycle.

Arabidopsis thaliana – wild type Cadmium toxicity and tolerance Phytochelatin X-ray micro-analysis 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Ager F.J., Ynsa M.D., Domínguez-Solís J.R., Gotor C., Respaldiza M.A. and Romero L.C. 2002. Cadmium localization and quanti cation in the plant Arabidopsis thaliana using micro-PIXE. NIM B 189:494–498.Google Scholar
  2. Ager F.J., Ynsa M.D., Domínguez-Solís J.R., López-Martín M.C., Gotor C. and Romero L.C.2003. Nuclear micro-probe analysis of Arabidopsis thaliana leaves. NIM B 210:401–406.Google Scholar
  3. Cazalé A.-C. and Clemens S. 2001. Arabidopsis thaliana ex-presses a second functional phytochelatin synthase. FEBS Lett. 507:215–219.Google Scholar
  4. Cobbett C. and Goldsbrough P. 2002. Phytochelatins and me-tallothioneins:roles in heavy metal detoxi cation and homeostasis. Annu. Rev. Plant Biol. 53:159–182.Google Scholar
  5. Gussarsson M., Asp H., Adalsteinsson S. and Jensén P.1996. Enhancement of cadmium effects on growth and nutrient composition of birch (Betula pendula) by buthionine sulph-oximine (BSO). J. Exp. Bot. 47:211–215.Google Scholar
  6. Gutíerrez-Alcala ´G., Gotor C., Meyer A.J., Fricker M., Vega J.M. and Romero L.C. 2000. Glutathione biosynthesis in Arabidopsis trichome cells. Proc. Natl. Acad. Sci. USA 97: 11108–11113.Google Scholar
  7. Ha S.-B., Smith A.P., Howden R., Dietrich W.M. and Bugg S. et al. 1999. Phytochelatin synthase genes from Arabidopsis and the yeast, Schizosacccharomyces pombe. Plant Cell 11: 1153–1164.Google Scholar
  8. Hoagland D.R. and Arnon D.J. 1959. The water-culture method of growing plants without soil. Calif. Agr. Expt. Sta. Circ. 347:26–29.Google Scholar
  9. Howden R., Andersen C.R., Goldsbrough P.B. and Cobbett C.S. 1995a. A cadmium-sensitive,glutathione-de cient mu-tant of Arabidopsis thaliana. Plant Physiol. 107:1067–1073.Google Scholar
  10. Howden R. and Cobbett C.S.1992. Cadmium-sensitive mu-tants of Arabidopsis thaliana. Plant Physiol. 99:100–107.Google Scholar
  11. Howden R., Goldsbrough P.B., Andersen C.R. and Cobbett C.S. 1995b. Cadmium-sensitive, cad1 mutants of Arabidopsis thaliana are phytochelatin deffcient. Plant Physiol. 107:1059–1066.Google Scholar
  12. Khan D.H., Duckett J.G., Frankland B. and Kirkham J.B. 1984. An X-ray microanalytical study of the distribution of cadmium in roots of Zea mays L.J. Plant Physiol. 115:19–28.Google Scholar
  13. De Knecht J.A. 1994. Cadmium Tolerance and Phytochelatin Production in Silene vulgaris. Doctorate thesis, Vrije Uni-versiteit, Amsterdam, The Netherlands.Google Scholar
  14. Küpper H., Lombi E., Zhao F.-J. and McGrath S.P.2000. Cellular compartmentation of cadmium and zinc in relation to other elements in the hyperaccumulator Arabidopsis hal-leri. Planta 212:75–84.Google Scholar
  15. Navarro S.X., Dziewiatkoski M.P. and Enyedi A.J. 1999. Iso-lation of cadmium excluding mutants of Arabidopsis thaliana using a vertical mesh transfer system and ICP-MS. J.Envi-ron. Sci. Health. A34:1797–1813.Google Scholar
  16. Punz W.F. and Sieghardt H. 1993. The response of roots of herbaceous plant species to heavy metals. Environ. Exp. Bot. 33:85–98.Google Scholar
  17. Reese R.N. and Wagner G.J. 1987. Effects of buthionine sul-phoximine on Cd-binding peptide levels in suspension-cultured tobacco cells treated with Cd, Zn, or Cu. Plant Physiol. 84:574–577.Google Scholar
  18. Rennenberg H. 1982. Glutathione metabolism and possible biological roles in higher plants. Phytochemistry 21:2771–2778.Google Scholar
  19. Sanitàdi Toppi L. and Gabbrielli R. 1999. Response to cadmium in higher plants. Environ. Exp. Bot. 41:105–130.Google Scholar
  20. Schat H. and Ten Bookum W.M. 1992. Genetic control of copper tolerance in Silene vulgaris. Heredity 68:219–229.Google Scholar
  21. Schat H., Llugany M., Vooijs R., Hartey-Whitaker J. and Bleeker P.M. 2002. The role of phytochelatins in constitutive and adaptive heavy metal tolerances in hyperaccumulator and non-hyperaccumulator metallophytes. J. Exp. Bot. 379: 2381–2392.Google Scholar
  22. Steffens J.C., Hunt D.F. and Williams B.G. 1986. Accumula-tion of non-protein metal-binding polypeptides (γ-glutamyl-cysteinyl)n-glycine in selected cadmium-resistant tomato cells. J. Biol. Chem. 261:13879–13882.Google Scholar
  23. Tukendorf A. and Rauser W.E. 1990. Changes in glutathione and phytochelatins in roots of maize seedlings exposed to cadmium. Plant Sci. 70:155–166.Google Scholar
  24. Vatamaniuk O.K., Mari S., Lu Y.-P. and Rea P.A. 1999. At-PCS1, a phytochelatin synthase from Arabidopsis:isolation and in vitro reconstitution. Proc. Natl. Acad. Sci. USA 96:7110–7115.Google Scholar
  25. Vazquez M.D., Barceló J., Poschenrieder Ch., Mádico J., Hatton P., Baker A.J.M. and Cope G.H. 1992. Localization of zinc and cadmium in Thlaspi caerulescens (Brassicaceae ), a metallophyte that can hyper accumulate both metals. J. Plant Physiol. 140:350–355.Google Scholar
  26. Wójcik M. and Tukendorf A. 1999. Cd-tolerance of maize, rye and wheat seedlings. Acta Physiol. Plant. 21:99–107.Google Scholar

Copyright information

© Kluwer Academic Publishers 2004

Authors and Affiliations

  • Małgorzata Wójcik
    • 1
  • Anna Tukiendorf
    • 1
  1. 1.Department of Plant PhysiologyPoland

Personalised recommendations