QVIA-SDN: Towards QoS-Aware Virtual Infrastructure Allocation on SDN-based Clouds

  • Felipe Rodrigo de Souza
  • Charles Christian Miers
  • Adriano Fiorese
  • Marcos Dias de Assunção
  • Guilherme Piegas KoslovskiEmail author


Virtual Infrastructures (VIs) emerged as a potential solution for network evolution and cloud services provisioning on the Internet. Deploying VIs, however, is still challenging mainly due to a rigid management of networking resources. By splitting control and data planes, Software-Defined Networks (SDN) enable custom and more flexible management, allowing for reducing data center usage, as well as providing mechanisms to guarantee bandwidth and latency control on switches and endpoints. However, reaping the benefits of SDN for VI embedding in cloud data centers is not trivial. Allocation frameworks require combined information from the control plan (e.g., isolation policies, flow identification) and data (e.g., storage capacity, flow table configuration) to find a suitable solution. In this context, the present work proposes a mixed integer programming formulation for the VI allocation problem that considers the main challenges regarding SDN-based cloud data centers. Some constraints are then relaxed resulting in a linear program, for which a heuristic is introduced. Experimental results of the mechanism, termed as QVIA-SDN, highlight that an SDN-aware allocation solution can reduce the data center usage and improve the quality-of-service perceived by hosted tenants.


Virtual infrastructure Allocation Data center SDN IaaS 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.



This research was supported by the UDESC PROMOP program and was developed at the LabP2D.


  1. 1.
    Al-Fares, M., Loukissas, A., Vahdat, A.: A scalable, commodity data center network architecture. SIGCOMM Comput. Commun. Rev. 38(4), 63–74 (2008)CrossRefGoogle Scholar
  2. 2.
    Al-Shabibi, A., De Leenheer, M., Gerola, M., Koshibe, A., Parulkar, G., Salvadori, E., Snow, B.: Openvirtex: make your virtual sdns programmable. In: Proceedings of the 3rd Workshop on Hot Topics in Software Defined Networking. HotSDN ’14, pp. 25–30. ACM (2014)Google Scholar
  3. 3.
    Ballani, H., Costa, P., Karagiannis, T., Rowstron, A.: Towards predictable datacenter networks. SIGCOMM Comput. Commun. Rev. 41(4), 242–253 (2011)CrossRefGoogle Scholar
  4. 4.
    Chen, D.-S., Batson, R.G., Dang, Y.: Applied integer programming: modeling and solution. Wiley, New York (2010)zbMATHGoogle Scholar
  5. 5.
    Chowdhury, M., Rahman, M.R., Boutaba, R.: Vineyard: virtual network embedding algorithms with coordinated node and link mapping. IEEE/ACM Trans. Networking 20(1), 206–219 (2012)CrossRefGoogle Scholar
  6. 6.
    Chowdhury, N.M.M.K., Boutaba, R.: Network virtualization: state of the art and research challenges. Comm. Mag. 47(7), 20–26 (2009)CrossRefGoogle Scholar
  7. 7.
    Cronkite-Ratcliff, B., Bergman, A., Vargaftik, S., Ravi, M., McKeown, N., Abraham, I., Keslassy, I.: Virtualized congestion control. In: Proceedings of the 2016 ACM SIGCOMM Conference, pp. 230–243. ACM, New York (2016)Google Scholar
  8. 8.
    De Cavalcanti, G.A.S., Obelheiro, R.R., Koslovski, G.: Optimal resource allocation for survivable virtual infrastructures. In: 2014 10th International Conference on the Design of Reliable Communication Networks (DRCN), pp. 1–8 (2014)Google Scholar
  9. 9.
    de Souza, F.R., Miers, C.C., Fiorese, A., Koslovski, G.P.: QoS-aware virtual infrastructures allocation on SDN-based clouds. In: 17th IEEE/ACM International Symposium on Cluster, Cloud and Grid Computing (CCGrid) (2017)Google Scholar
  10. 10.
    Demirci, M., Ammar, M.: Design and analysis of techniques for mapping virtual networks to software-defined network substrates. Comput. Commun. 45, 1–10 (2014)CrossRefGoogle Scholar
  11. 11.
    Drutskoy, D., Keller, E., Rexford, J.: Scalable network virtualization in software-defined networks. Internet Comput. IEEE 17(2), 20–27 (2013)CrossRefGoogle Scholar
  12. 12.
    Dräxler, S., Karl, H., Mann, Z.Á.: Joint optimization of scaling and placement of virtual network services. In: 17th IEEE/ACM International Symposium on Cluster, Cloud and Grid Computing (CCGrid) (2017)Google Scholar
  13. 13.
    Fischer, A., Botero, J.F., Beck, M.T., de Meer, H., Hesselbach, X.: Virtual network embedding: a survey. Communications Surveys Tutorials, IEEE 15(4), 1888–1906 (2013)CrossRefGoogle Scholar
  14. 14.
    Guo, C., Lu, G., Wang, H.J., Yang, S., Kong, C., Sun, P., Wu, W., Zhang. Y.: Secondnet: a data center network virtualization architecture with bandwidth guarantees. In: Proceedings of the 6th International COnference, Co-NEXT ’10, vol. 15, pp. 1–15:12. ACM, New York (2010)Google Scholar
  15. 15.
    He, K., Rozner, E., Agarwal, K., Gu, Y.J., Felter, W., Carter, J., Akella, A.: Ac/dc tcp: virtual congestion control enforcement for datacenter networks. In: Proceedings of ACM SIGCOMM 2016 Conference, pp. 244–257. ACM, New York (2016)Google Scholar
  16. 16.
    Jennings, B., Stadler, R.: Resource management in clouds survey and research challenges. J. Netw. Syst. Manag. 1–53 (2014)Google Scholar
  17. 17.
    Kang, N., Liu, Z., Rexford, J., Walker, D.: Optimizing the one big switch abstraction in software-defined networks. In: Proceedings of the 9th ACM CoNEXT ’13, pp. 13–24. ACM, New York (2013)Google Scholar
  18. 18.
    Koslovski, G., Soudan, S., Gonçalves, P., Vicat-Blanc, P.: Locating virtual infrastructures: users and inp perspectives. In: 12th IFIP/IEEE International Symposium on Integrated Network Management (IM 2011) and Workshops, pp. 153–160 (2011)Google Scholar
  19. 19.
    Kreutz, D., Ramos, F. M. V., Verissimo, P.E., Rothenberg, C.E., Azodolmolky, S., Uhlig, S.: Software-defined networking: a comprehensive survey. Proc. IEEE 103(1), 14–76 (2015)CrossRefGoogle Scholar
  20. 20.
    Li, B., Guo, S., Wu, Y., Liu, D.: Construction and resource allocation of cost-efficient clustered virtual network in software defined networks. J. Grid Comput. 15(4), 457–473 (2017)CrossRefGoogle Scholar
  21. 21.
    Manvi, S.S., Shyam, G.K.: Resource management for infrastructure as a service (iaas) in cloud computing: a survey. J. Net. Comput. Appl. 41, 424–440 (2014)CrossRefGoogle Scholar
  22. 22.
    Mijumbi, R., Serrat, J., Rubio-Loyola, J., Bouten, N., De Turck, F., Latre, S.: Dynamic resource management in sdn-based virtualized networks. In: Proceedings of 10th CNSM, pp. 412–417 (2014)Google Scholar
  23. 23.
    Mijumbi, R., Serrat, J., Gorricho, J.-L., Boutaba, R.: A path generation approach to embedding of virtual networks. CoRR arXiv:1509.07684 (2015)
  24. 24.
    Mysore, R.N., Pamboris, A., Farrington, N., Huang, N., Miri, P., Radhakrishnan, S., Subramanya, V., Vahdat, A.: Portland: a scalable fault-tolerant layer 2 data center network fabric. SIGCOMM Comput. Commun. Rev. 39(4), 39–50 (2009)CrossRefGoogle Scholar
  25. 25.
    de Oliveira, R., Koslovski, G.: A tree-based algorithm for virtual infrastructure allocation with joint virtual machine and network requirements. Int. J. Netw. Manag. (IJNM) (2016)Google Scholar
  26. 26.
    Pašcinski, U., Trnkoczy, J., Stankovski, V., Cigale, M., Gec, S.: Qos-aware orchestration of network intensive software utilities within software defined data centres. J. Grid Comput. 16(1), 85–112 (2018)CrossRefGoogle Scholar
  27. 27.
    Persico, V., Marchetta, P., Botta, A., Pescape, A.: Measuring network throughput in the cloud: the case of amazon {EC2}. Comput. Net. 93, Part 3:408–422 (2015). Cloud Networking and Communications {II}Google Scholar
  28. 28.
    Pfaff, B., Pettit, J., Koponen, T., Jackson, E., Zhou, A., Rajahalme, J., Gross, J., Wang, A., Stringer, J., Shelar, P., Amidon, K., Casado, M.: The design and implementation of open vswitch. In: 12th USENIX Symposium on Networked Systems Design and Implementation (NSDI 15), pp. 117–130, USENIX Association (2015)Google Scholar
  29. 29.
    Popa, L., Krishnamurthy, A., Ratnasamy, S., Stoica, I.: Faircloud: sharing the network in cloud computing. In: Proceedings of the 10th ACM Workshop on Hot Topics in Networks, HotNets-X, pp. 22:1–22:6. ACM, New York (2011)Google Scholar
  30. 30.
    Rost, M., Fuerst, C., Schmid, S.: Beyond the stars: revisiting virtual cluster embeddings. In: Proc. ACM SIGCOMM Computer Communication Review (CCR) (2015)Google Scholar
  31. 31.
    Sherwood, R., Gibb, G., Yap, K.K., Casado, M., Mckeown, N., Parulkar, G.: Flowvisor: A network virtualization layer. Technical report (2009)Google Scholar
  32. 32.
    Sherwood, R., Gibb, G., Yap, K.-K., Appenzeller, G., Casado, M., McKeown, N., Parulkar, G.: Can the production network be the testbed?. In: Proceedings of the 9th USENIX Conference on Operating Systems Design and Implementation, pp. 1–6. USENIX (2010)Google Scholar
  33. 33.
    Stallings, W.: Foundations of Modern Networking: SDN, NFV, QoE, IoT, and Cloud, 1st edn. Addison-Wesley, Reading (2015)Google Scholar
  34. 34.
    Tao, F., Jun, B., Ke, W.: Allocation and scheduling of network resource for multiple control applications in sdn. Commun. China 12(6), 85–95 (2015)CrossRefGoogle Scholar
  35. 35.
    Huu, T.T., Koslovski, G., Anhalt, F., Montagnat, J., Primet, P.V.-B.: Joint elastic cloud and virtual network framework for application performance-cost optimization. J. Grid Comput. 9(1), 27–47 (2011)CrossRefGoogle Scholar
  36. 36.
    Yu, M., Yi, Y., Rexford, J., Chiang, M.: Rethinking virtual ne twork embedding: substrate support for path splitting and migration. SIGCOMM Comput. Commun. Rev. 38(2), 17–29 (2008)CrossRefGoogle Scholar

Copyright information

© Springer Nature B.V. 2019

Authors and Affiliations

  1. 1.Graduate Program in Applied ComputingSanta Catarina State UniversityJoinvilleBrazil
  2. 2.INRIA Avalon, LIP LaboratoryÉcole Normale Supérieure de Lyon - University of LyonLyonFrance

Personalised recommendations